scholarly journals Preparation of Mesoporous Activated Carbon from Jackfruit PPI-1 Waste and Development of Different Surface Functional Groups

Author(s):  
T.V. Nagalakshmi ◽  
K.A. Emmanuel ◽  
Ch. Suresh Babu ◽  
Ch. Chakrapani ◽  
P. Paul Divakar

Jackfruit PPI-1 variety was selected as source of lignocellulose material. Its rind and pulp waste was used as precursor for preparation of activated carbon. K2CO3 was selected as activating agent to prepare activated carbon. Various carbons were prepared by changing the impregnation ratio (IR) at different temperatures. Activated carbon prepared at 600°C and at IR1 had good BET surface area (987m2 g-1) and yield (61.97%). In order to introduce different functional groups, this carbon was divided into two parts. One part was subjected to liquid phase oxidation with 0.1N HNO3 and the other part was soaked in 0.1N KOH for 3hours. SEM, FTIR, TPD, XRD and TGA analyses were done to identify surface morphological changes, nature of functional groups and thermal stability of activated carbons.

2017 ◽  
Vol 4 (2) ◽  
pp. 186-194 ◽  
Author(s):  
Tan I. A. W. ◽  
Abdullah M. O. ◽  
Lim L. L. P. ◽  
Yeo T. H. C.

Activated carbon derived from agricultural biomass has been increasingly recognized as a multifunctional material for various applications according to its physicochemical characteristics. The application of activated carbon in adsorption process mainly depends on the surface chemistry and pore structure which is greatly influenced by the treatment method. This study aims to compare the textural characteristics, surface chemistry and surface morphology of coconut shell-based activated carbon modified using chemical surface treatments with hydrochloric acid (HCl) and sodium hydroxide (NaOH). The untreated and treated activated carbons were characterized for their physical and chemical properties including the Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and textural characterization. The FTIR spectra displayed bands confirming the presence of carboxyl, hydroxyl and carbonyl functional groups. The Brunauer–Emmett–Teller (BET) surface area of the untreated activated carbon was 436 m2/g whereas the surface area of the activated carbon modified using 1M NaOH, 1M HCl and 2M HCl was 346, 525 and 372 m2/g, respectively. SEM micrographs showed that many large pores in a honeycomb shape were clearly found on the surface of 1M HCl sample. The pore structure of the activated carbon treated with 2M HCl and NaOH was partially destroyed or enlarged, which decreased the BET surface area. The modification of the coconut shell-based activated carbon with acidic and alkaline treatments has successfully altered the surface functional groups, surface morphology and textural properties of the activated carbon which could improve its adsorptive selectivity on a certain adsorbate.


Author(s):  
Hemavathy Palanisami ◽  
Mohamad Rafiuddin Mohd Azmi ◽  
Muhammad Abbas Ahmad Zaini ◽  
Zainul Akmar Zakaria ◽  
Muhd Nazrul Hisham Zainal Alam ◽  
...  

Abstract This work was aimed to evaluate the adsorptive properties of activated carbons from coffee residue for phenol removal. The coffee residue was activated using H3PO4 and KOH, and the resultant activated carbons were characterized for surface area and functional groups. The values of surface area were recorded as 1,030 m2/g and 399 m2/g for H3PO4- and KOH-activated carbons, respectively. The maximum capacity for phenol removal is comparable for both activated carbons at 43 mg/g. The pores might be inaccessible due to electrostatic repulsion by surface functional groups and hydroxyl anions. The second stage in a two-stage adsorber design is necessary to accomplish the process with high performance and minimum dosage of activated carbon. Coffee residue is a promising activated carbon precursor for phenol removal.


BioResources ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 614-621
Author(s):  
Qingsong Ji ◽  
Haichao Li ◽  
Jingjing Zhang

The object of this study was to prepare activated carbons containing nitrogenous functional groups by a chemical method from nitrogen-containing raw materials. Fish (Ctenopharyngodon idellus) scales were impregnated with phosphoric acid (H3PO4) and activated at varied temperatures. The adsorption ability, structural characteristics, surface chemistry, and morphology of the activated carbons were characterized by methylene blue and iodine values, nitrogen adsorption, the Boehm method, scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The total alkaline groups content of the activated carbon produced from fish scales was 0.4330 mmol/g, the total acidic groups was 1.68 mmol/g, the Brunauer–Emmett–Teller (BET) surface area was 501 cm2/g, and the total pore volume was 0.284 cm3/g. The average pore diameter was 1.94 nm under an activation temperature of 550 °C, an activation time of 1 h, and an impregnation ratio of 2. As a result of this study, nitrogenous functional groups that contained acid-base amphoteric adsorbent were produced.


Holzforschung ◽  
2016 ◽  
Vol 70 (3) ◽  
pp. 195-202 ◽  
Author(s):  
Yuxiang Huang ◽  
Guangjie Zhao

Abstract Activated carbon fibers (ACFs) have been prepared from liquefied wood (Wliq) by chemical activation with KOH, with a particular focus on the effect of KOH/fiber ratio in term of porous texture and surface chemistry. ACFs based on steam activation served as a blank for comparison. The properties of the ACFs were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), nitrogen adsorption/desorption, Fourier transform infrared (FTIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). The results show that the KOH-activated ACFs have rougher surfaces and more amorphous structure compared with the blank. The pore development was significant when the KOH/fiber ratio reached 3, and achieved a maximum Brunauer-Emmett-Teller (BET) surface area of 1371 m2 g-1 and total pore volume (Vtot) of 0.777 cm3 g-1, of which 45.3% belong to mesopores with diameters of 2–4 nm, while the blank activated at the same temperature had a BET surface of 1250 m2 g-1 and Vtot of 0.644 cm3 g-1, which are mainly micropores. The surface functional groups are closely associated with the KOH/fiber ratios. KOH-activated ACFs with KOH/fiber ratio of 3 have more oxygenated surface functional groups (C-O, C=O, -COOH) than the blank.


1989 ◽  
Vol 6 (4) ◽  
pp. 182-191 ◽  
Author(s):  
S. Biniak ◽  
J. Kaźmièrczak ◽  
A. Swiatkowski

The effect of the chemical character of the surface of an activated carbon on phenol adsorption from aqueous solutions is described. The adsorbents used consisted of five types of activated carbon obtained by modification of the raw material. The results obtained indicate that the principal factor influencing adsorption is the oxygen contained in those surface functional groups which exhibit an acidic character. Moderately and slightly acidic groups are the most important in this context.


2018 ◽  
Vol 13 (1) ◽  
pp. 153-159
Author(s):  
Sahira Joshi

 This paper presents the comparative study on the adsorption capacity of activated carbons prepared from Lapsi (Choerospondias axillaris) seed stone and Betel (Areca catechu) nut. Activated carbons (ACs) were prepared from Lapsi seed stone (LSS) and Betel Nut (BN) by chemical activation with H3PO4 (in the ratio of 1:1 by weight) at 400°C. The pore structure of activated carbons was determined by iodine number and methylene blue number. Surface morphology of ACs was studied by scanning electron microscopy (SEM). Surface functional groups were analyzed by Fourier Transform Infra Red Spectroscopy (FTIR). As indicated by TGA analysis, the appropriate temperature required for carbonization was 400 ºC. Betel nut AC showed high iodine number and methylene number of 888 mg/gm and 369 mg/gm respectively. SEM micrographs of Betel nut AC show the presence of well developed pores on its surface. FTIR result indicated that both ACs contain −OH, >C=O groups as oxygen containing surface functional groups. Based on the result, the AC prepared from betel nut by activation with H3PO4 is comparable with commercial activated carbon and could be used as potential adsorbent for removal of pollutants from water and waste water.Journal of the Institute of Engineering, 2017, 13(1): 153-159


2018 ◽  
Vol 271 ◽  
pp. 142-150 ◽  
Author(s):  
Ju Sun ◽  
Xia Liu ◽  
Shengxia Duan ◽  
Ahmed Alsaedi ◽  
Fengsong Zhang ◽  
...  

2019 ◽  
Vol 5 (3) ◽  
pp. 43 ◽  
Author(s):  
Aloysius Akaangee Pam

In this present work, a novel method for synthesis of palm kernel shell activated carbon was established using DES (choline chloride/urea)/H3PO4 as the activating agent. The pore characterization, morphology, and adsorption properties of the activated carbons were investigated. The activated carbon samples made from the same feedstock at two pyrolysis temperatures (500 and 600 °C) were compared for their ability to adsorb Pb(II) in aqueous solution. The results demonstrated that the production of the activated carbon and adsorptive properties were significantly influenced by the pyrolysis temperature and the ratio of precursor to activating agent. DES/H3PO4 activated carbon (having surface area 1413 m2/g and total pore volume 0.6181 cm3/g) demonstrated good Pb(II) removal. Although all the tested activated carbon samples adsorbed Pb(II) from aqueous solution, they demonstrated different adsorption capabilities according to their various properties. The pyrolysis temperature, however, showed little influence on the activated carbon adsorption of Pb(II) when compared to the impregnation ratio. Their good desorption performance perhaps resulted from the porous structure.


2020 ◽  
Vol 1010 ◽  
pp. 453-458
Author(s):  
Mohd Zazmiezi Mohd Alias ◽  
Rozidaini Mohd Ghazi ◽  
Nik Raihan Nik Yusoff ◽  
Mohd Hafiz Jamaludin

This study investigated the effect of activating agent on activated carbon preparation and potential chemical oxygen demand (COD) reduction using activated carbons (AC) prepared. Zinc chloride, phosphoric acid and potassium hydroxide were utilized in impregnation of bamboo and rice husk. Result of SEM-EDX, FTIR as well as COD reduction were compared and discussed. The SEM displayed highest porosity in AC using KOH activation. FTIR analysis displayed obvious difference for each activation. AC using KOH activation obtained highest COD reduction.


Sign in / Sign up

Export Citation Format

Share Document