scholarly journals Integrated Anaerobic-Aerobic Sequencing Batch Reactors for Unrestricted Reuse Using Greywater Treatment

Author(s):  
Sarath Chandra Pragada ◽  
◽  
Arun Kumar Thalla

This work is carried out to evaluate the efficiency of the pilot scale integrated scheme which comprises of an Anaerobic Sequence Batch Reactor (AnSBR) reactor, Aerobic Sequence Batch Reactor (ASBR), and sand filter for the elimination of organic matter and nutrient in synthetic greywater. The treatment effectiveness of the pilot plant was identified based on its pollutant removal efficiency for 12 months. The AnSBR removes 49.64, 64.24, 55.35, 87.82, 54.36, 32.73, 72.61, 34.88, and 72.11% of Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), Total Nitrogen (TN), anionic surfactant, Total Phosphorous (TP), Ammonium Nitrogen (NH4+-N), Total Suspended Solids (TSS), Nitrate Nitrogen (NO3--N) and sulphates, respectively. Moreover, the removal efficiencies are improved to 84.27, 86.04, 80.8, 95.13, 80.55, 90.23, 72.98, and 75.45%, respectively, in the ASBR with an additional aeration period. The removal efficiencies of COD, BOD, TN, anionic surfactant, TP, TSS, NH4+-N, NO3--N, and sulphates have been improved progressively to 89.12, 94.9, 85.15, 99, 86.98, 88.54, 93.52, 94.89, and 80.49%, respectively in the sand filter. In tracer studies, that a total of 29.3% of the salt has been remained in the reactor which suggests a good deal of salt of the integrated system. Furthermore, this hydrodynamic study discloses a moderately low volume (30.3%) for the integrated system with the mean residence time is lesser than theoretical hydraulic residential time. Based on these findings, it is evident that the integrated anaerobic-aerobic system bounded with the sand filter process accomplishes the achievement of efficiency.

2016 ◽  
Vol 74 (1) ◽  
pp. 65-72 ◽  
Author(s):  
N. Maharjan ◽  
K. Kuroda ◽  
K. Dehama ◽  
M. Hatamoto ◽  
T. Yamaguchi

In this study, conventional slow sand filter (SSF) and modified slow sponge sand filter (SpSF) were investigated for the post-treatment of up-flow anaerobic sludge blanket (UASB)-down-flow hanging sponge (DHS) reactor effluent. The seasonal variation did not show significant differences in removal efficiencies of both filters. However in summer, both filters were able to achieve high total suspended solids and total biochemical oxygen demand removal averaging 97% and 99%, respectively. Contrary to organic removal, total nitrogen removal efficiency was satisfactory, showing increased removal efficiencies averaging 58% and 62% for SSF and SpSF in summer. On the other hand, average total coliform removal of SSF and SpSF was 4.2 logs and 4.4 logs and corresponding Escherichia coli removal was 4.0 logs and 4.1 logs, respectively. From our observation, it could be concluded that the relative performance of SpSF for nutrients and coliforms was better than SSF due to the effectiveness of sponge media over fine sands. Moreover, microbial community analysis revealed that the members of phylum Proteobacteria were predominant in the biofilms of both filters, which could have contributed to pollutant removal. Therefore, SpSF could be concluded to be a suitable post-treatment of UASB-DHS system in warmer conditions.


2012 ◽  
Vol 65 (9) ◽  
pp. 1684-1691 ◽  
Author(s):  
G. Farabegoli ◽  
A. Chiavola ◽  
E. Rolle

The olive-oil extraction industry is an economically important activity for many countries of the Mediterranean Sea area, with Spain, Greece and Italy being the major producers. This activity, however, may represent a serious environmental problem due to the discharge of highly polluted effluents, usually referred to as ‘olive mill wastewaters’ (OMWs). They are characterized by high values of chemical oxygen demand (COD) (80–300 g/L), lipids, total polyphenols (TPP), tannins and other substances difficult to degrade. An adequate treatment before discharging is therefore required to reduce the pollutant load. The aim of the present paper was to evaluate performances of a biological process in a sequencing batch reactor (SBR) fed with pre-treated OMWs. Pre-treatment consisted of a combined acid cracking (AC) and granular activated carbon (GAC) adsorption process. The efficiency of the system was compared with that of an identical SBR fed with the raw wastewater only diluted. Combined AC and GAC adsorption was chosen to be used prior to the following biological process due to its capability of providing high removal efficiencies of COD and TPP and also appreciable improvement of biodegradability. Comparing results obtained with different influents showed that best performances of the SBR were obtained by feeding it with raw diluted OMWs (dOMWs) and at the lowest dilution ratio (1:25): in this case, the removal efficiencies were 90 and 76%, as average, for COD and TPP, respectively. Feeding the SBR with either the pre-treated or the raw dOMWs at 1:50 gave very similar values of COD reduction (74%); however, an improvement of the TPP removal was observed in the former case.


2017 ◽  
Vol 77 (2) ◽  
pp. 304-322 ◽  
Author(s):  
D. T. Sponza ◽  
P. Alicanoglu

Abstract Inadequate treatment of hospital wastewater could result in considerable risks to public health due to its macro- and micropollutant content. In order to eliminate this problem, a new nanoparticle composite was produced under laboratory conditions and a photocatalytic degradation approach was used. Chemical oxygen demand (COD), biological oxygen demand (BOD5), total suspended solids (TSS), total Kjeldahl nitrogen (TKN), total phosphorus (TP) (macro) and oflaxin (micro) pollutant removal were investigated with the nano graphene oxide magnetite (Nano-GO/M) particles by two different processes, namely adsorption and photodegradation. Low removal efficiencies (21–60%) were obtained in the adsorption process for the parameters given above, after 90 min contact time at a pH of 7.8 with 5 g/L Nano-GO/M composite. Using the photodegradation process, higher removal efficiencies were obtained with 2 g/L Nano-GO/M composite for COD (88%), TSS (82%), TKN (95%) and oflaxin (97%), at pH 7.8 after 60 min irradiation time at a UV power of 300 W. The synthesized nanoparticle was reused for two sequential treatments of pharmaceutical wastewater with no significant losses of removal efficiencies (for oflaxin 97%–90%). The quality of the treated hospital wastewater was first class according to the Turkish Water Pollution Control Regulations criteria. This water could also be used for irrigation purposes.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 374
Author(s):  
Hongbo Feng ◽  
Honggang Yang ◽  
Jianlong Sheng ◽  
Zengrui Pan ◽  
Jun Li

Aerobic granular sludge (AGS) with oversized diameter commonly affects its stability and pollutant removal. In order to effectively restrict the particle size of AGS, a sequencing batch reactor (SBR) with a spiny aeration device was put forward. A conventional SBR (R1) and an SBR (R2) with the spiny aeration device treating tannery wastewater were compared in the laboratory. The result indicates that the size of the granular sludge from R2 was smaller than that from R1 with sludge granulation. The spines and air bubbles could effectively restrict the particle size of AGS by collision and abrasion. Nevertheless, there was no significant change in mixed liquor suspended solids (MLSS) and the sludge volume index (SVI) in either bioreactors. The removal (%) of chemical oxygen demand (COD) and ammonia nitrogen (NH4+-N) in these two bioreactors did not differ from each other greatly. The analysis of biological composition displays that the proportion of Proteobacteria decreased slightly in R2. The X-ray fluorescence (XRF) analysis revealed less accumulation of Fe and Ca in smaller granules. Furthermore, a pilot-scale SBR with a spiny aeration device was successfully utilized to restrict the diameter of granules at about 300 μm.


2009 ◽  
Vol 36 (4) ◽  
pp. 690-700 ◽  
Author(s):  
J. Mena ◽  
R. Gómez ◽  
J. Villaseñor ◽  
A. de Lucas

Synthetic wastewaters simulating physically pre-treated low-loaded winery effluents were treated for four months with five pilot-scale horizontal subsurface flow constructed wetlands (HSSF-CWs) using different plants. Species under study were Phragmites australis (HSSF-CW2), Lythrum salicaria (HSSF-CW3), Cladium mariscus (HSSF-CW4), and Iris pseudacorus (HSSF-CW5). The designation HSSF-CW1 was not planted, and was used as a control. The mean dissolved oxygen and oxidation–reduction potential values in all HSSF-CWs indicated anaerobic conditions in the bulk liquid. High pollutant-removal efficiencies were obtained. Apparently, the species with higher growth (Phragmites, Lythrum, and particularly Iris) improved total nitrogen (TN) and nitrogen as ammonium (N-NH4+) removals, but adversely affected sulphate (SO42–) anaerobic reduction. Chemical oxygen demand (COD) removal efficiencies were high, although there were no clear indications how the kinds of plants might have influenced this parameter. A statistical analysis of variance indicated that only N-NH4+ removal efficiencies were statistically different owing to the influence of the different plants. In a second 6 month experimental period, polyphenols (13 mg L–1) were added to the synthetic wastewater to study possible inhibition effects. The addition of polyphenols did not seem to cause inhibition effects on COD, TN, and N-NH4+ removals, but clearly negatively affected SO42– removal. A new two-way analysis of variance confirmed that only SO42– removal was negatively affected by polyphenols, while the effects of the different plants were only significant for N-NH4+ removal. Polyphenols were nearly completely removed. First order rate constants obtained for COD, TN, SO42–, and polyphenol removals were similar to those reported by other authors.


Author(s):  
Ogbebor Daniel ◽  
Ndekwu, Benneth Onyedikachukwu

Aim: The study aimed at designing a wastewater treatment method for removal of (Biological Oxygen Demand) BOD5 using Sequencing batch reactor (SBR). Study Design: SBR functions as a fill-and-draw type of activated sludge system involving a single complete-mix reactor where all steps of an activated sludge process take place. Methodology: The intermittent nature of slaughterhouse wastewaters favours batch treatment methods like sequence batch reactor (SBR). Attempts to remediate the impact of this BOD5 on the stream, led to the design of a sequence batch reactor which was designed to treat slaughterhouse effluent of 1000 L. Results: The oxygen requirement for effective removal of BOD5 to 95% was determined to be 21.10513 kgO2/d, while L:B  of 3:1 was considered for the reactor. Also, air mixing pressure for the design was 0.16835 bar, while settling velocity was . Conclusion: To ensure proper treatment of BOD5 load of the slaughterhouse, a sequencing Batch reactor of 1000 litre carrying capacity was designed. For effective operation of this design, the pressure exerted by the mixing air was 0.16835 bar which was far greater than the pressure exerted by the reactor content and the nozzle. Settling velocity of 0.0003445 m/s for 0.887 hrs was required for the reactor to be stable and a theoretical air requirement of 1.6884 m³/d was calculated. Hence the power dissipated by the rising air bubbles to ensure efficient mixing of oxygen in the reactor was calculated as 26530003.91 Kilowatts. With these design parameters, the high BOD5 load downstream of the river can be treated to fall below the FMEnv recommended limit of 50 mg/l.


2017 ◽  
Vol 76 (5) ◽  
pp. 1044-1058 ◽  
Author(s):  
Amir Mohammad Mansouri ◽  
Ali Akbar Zinatizadeh

The performance of two bench scale activated sludge reactors with two feeding regimes, continuous fed (an up-flow aerobic/anoxic sludge fixed film (UAASFF) bioreactor) and batch fed (sequencing batch reactor (SBR)) with intermittent aeration, were evaluated for simultaneous nutrients (N, P) removal. Three significant variables (retention/reaction time, chemical oxygen demand (COD): N (nitrogen): P (phosphorus) ratio and aeration time) were selected for modeling, analyzing, and optimizing the process. At high retention time (≥6 h), two bioreactors showed comparable removal efficiencies, but at lower hydraulic retention time, the UAASFF bioreactor showed a better performance with higher nutrient removal efficiency than the SBR. The experimental results indicated that the total Kjeldahl nitrogen removal efficiency in the UAASFF increased from 70.84% to 79.2% when compared to SBR. It was also found that the COD removal efficiencies of both processes were over 87%, and total nitrogen and total phosphorus removal efficiencies were 79.2% and 72.98% in UAASFF, and 71.2% and 68.9% in SBR, respectively.


Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1539 ◽  
Author(s):  
Justyna Michalska ◽  
Izabela Greń ◽  
Joanna Żur ◽  
Daniel Wasilkowski ◽  
Agnieszka Mrozik

Hauling landfill leachate to offsite urban wastewater treatment plants is a way to achieve pollutant removal. However, the implementation of biological methods for the treatment of landfill leachate can be extremely challenging. This study aims to investigate the effect of blending wastewater with 3.5% and 5.5% of the industrial leachate from the Kalina pond (KPL) on the performance of sequencing batch reactor (SBR) and capacity of activated sludge microorganisms. The results showed that the removal efficiency of the chemical oxygen demand declined in the contaminated SBR from 100% to 69% and, subsequently, to 41% after the cotreatment with 3.5% and 5.5% of the pollutant. In parallel, the activities of the dehydrogenases and nonspecific esterases declined by 58% and 39%, and 79% and 81% after 32 days of the exposure of the SBR to 3.5% and 5.5% of the leachate, respectively. Furthermore, the presence of the KPL in the sewage affected the sludge microorganisms through a reduction in their functional capacity as well as a decrease in the percentages of the marker fatty acids for different microbial groups. A multifactorial analysis of the parameters relevant for the wastewater treatment process confirmed unambiguously the negative impact of the leachate on the operation, activity, and structure of the activated sludge.


2015 ◽  
Vol 72 (10) ◽  
pp. 1796-1802
Author(s):  
Luboš Stříteský ◽  
Radka Pešoutová ◽  
Petr Hlavínek

This paper deals with biological treatment of malt house wastewater using algal-bacterial flocs. During three months of testing, optimisation of growth conditions and biomass separation leads to maximisation of biomass production, improved flocs settleability and increased pollutant removal efficiency while maintaining low energy demand. At a high food to microorganism ratio (0.16 to 0.29 kg BOD5 kg−1 TSS d−1), the biological oxygen demand (BOD5), chemical oxygen demand (CODCr), total phosphorus (Ptot) and total suspended solids (TSS) removal efficiencies were all higher than 90%. At a food to microorganism ratio of 0.06 kg BOD5 kg−1 TSS d−1, BOD5, CODCr, total nitrogen (Ntot), Ptot and TSS removal efficiencies of 99.5%, 97.6%, 91.5%, 97.8% and 98.4%, respectively, were achieved. The study also proved a strong dependence of removal efficiencies on solar radiation. The results suggest the algae-bacteria system is suitable for treatment of similar wastewater in locations with available land and sufficient solar radiation and temperature during the whole year.


2015 ◽  
Vol 71 (3) ◽  
pp. 440-445 ◽  
Author(s):  
C. Bumbac ◽  
I. A. Ionescu ◽  
O. Tiron ◽  
V. R. Badescu

The focus of this study was to assess the treatment performance and granule progression over time within a continuous flow reactor. A continuous flow airlift reactor was seeded with aerobic granules from a laboratory scale sequencing batch reactor (SBR) and fed with dairy wastewater. Stereomicroscopic investigations showed that the granules maintained their integrity during the experimental period. Laser diffraction investigation showed proof of new granules formation with 100–500 μm diameter after only 2 weeks of operation. The treatment performances were satisfactory and more or less similar to the ones obtained from the SBR. Thus, removal efficiencies of 81–93% and 85–94% were observed for chemical oxygen demand and biological oxygen demand, respectively. The N-NH+4 was nitrified with removal efficiencies of 83–99% while the nitrate produced was simultaneously denitrified – highest nitrate concentration determined in the effluent was 4.2 mg/L. The removal efficiency of total nitrogen was between 52 and 80% depending on influent nitrogen load (39.3–76.2 mg/L). Phosphate removal efficiencies ranged between 65 and above 99% depending on the influent phosphate concentration, which varied between 11.2 and 28.3 mg/L.


Sign in / Sign up

Export Citation Format

Share Document