scholarly journals Scarification in no-tillage: soil physics and plant development

2020 ◽  
Vol 19 (2) ◽  
pp. 151-160
Author(s):  
Marco Segalla Prazeres ◽  
Fabrício Tondello Barbosa ◽  
Ildegardis Bertol ◽  
Tercio Vaisnava Fehlauer

No-tillage is conservationist soil management for agricultural production and it is based on soil cover by crop residues and restricted mobilization to the sowing line. However, its structure can be affected by the excessive compaction resulting from the traffic of machines. The objective of this study was to evaluate soil physical properties and crop performance in no-tillage with and without scarification, combined with different successions of plant species, in a Humic Cambisol. For this, the species of black oat, wheat and forage turnip were cultivated in winter, and later, corn and beans in summer. Soil samples were collected at the beginning and at the end of the experimental period, while evaluations of plant yield were carried out in the final stage of development. Soil scarification reduces relative density (RD) and soil resistance to penetration (RP) after preparation of soil, with effect restricted to the surface layer. Such effects persist for one year, however RD and RP increase over time, regardless of soil management. RP is more sensitive for evaluation of soil compaction and correlates positively with RD, with exponential adjustment. The aerial biomass of black oat, wheat and forage turnip was not affected by soil scarification, and crop yield of beans and corn showed to be more related to the previous cultivation than the scarification in no-tillage.

Author(s):  
Laura Carretta ◽  
Alessandra Cardinali ◽  
Andrea Onofri ◽  
Roberta Masin ◽  
Giuseppe Zanin

Abstract This study investigates the adsorption and dissipation of glyphosate and the formation/dissipation of AMPA in non-tilled (NT) and conventionally tilled (CT) soil at 0–5 and 5–20 cm depth. Glyphosate adsorption was mainly related to the different NT and CT soil properties (clay and amorphous Al oxides), whereas an effect of the soil management could not be identified. Glyphosate dissipation was initially fast, and it slowed down later. The initial glyphosate concentration in NT soil at 0–5 cm was significantly lower than the dose applied due to the interception by the weeds and crop residues. AMPA began to form early after treatment and persisted longer than glyphosate. The DT50 range was 8–18 days for glyphosate and 99–250 days for AMPA. Longer glyphosate and AMPA DT50 were observed in NT soil compared to CT soil but, for glyphosate, the difference was significant only at 5–20 cm. Higher glyphosate and AMPA concentrations were detected in NT than in CT soil at the end of the study at 0–5 cm. The differences in glyphosate and AMPA DT50 and persistence were mainly attributable to the influence of different NT and CT soil characteristics. However, other factors could have contributed to the different glyphosate and AMPA dynamics between the soils, like glyphosate wash-off from crop residues on NT soil with the rainfall, the delayed glyphosate return to the soil by weed root exudation or weeds decomposition, and the NT soil compaction which may have reduced the microbial degradation of glyphosate at low concentrations. Graphic abstract


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1276
Author(s):  
Vaida Steponavičienė ◽  
Aušra Marcinkevičienė ◽  
Lina Marija Butkevičienė ◽  
Lina Skinulienė ◽  
Vaclovas Bogužas

The composition of weed communities in agricultural crops is dependent on soil properties and the applied agronomic practices. The current study determined the effect of different tillage systems and crop residue on the soil weed community composition. The research programme encompassed 2013–2015 in a long-term field experiment located in the Experimental Station of Vytautas Magnus University in Lithuania. The soil type in the experimental field was qualified as Endocalcaric Stagnosol (Aric, Drainic, Ruptic, Amphisiltic). Weeds were categorised into communities according to soil pH, nitrogen and moisture indicators. The results of investigations were grouped using cluster analysis. Agricultural crops were dominated by different weed species depending on the soil pH and moisture. Weed species were relatively more frequent indicating nitrogen-rich and very nitrogen-rich soils. In the reduced tillage and no-tillage systems, an increase in the abundance of weed species indicating moderate acidity and low acidity, moderately wet and wet, nitrogen-rich and very nitrogen-rich soils was observed. The application of plant residues decreased the weed species abundance. In the reduced tillage and no-tillage systems, the quantitative distribution of weed was often uneven. By evaluating the association of weed communities with groups of different tillage systems with or without plant residues, their control can be optimised.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1438
Author(s):  
Snežana Jakšić ◽  
Jordana Ninkov ◽  
Stanko Milić ◽  
Jovica Vasin ◽  
Milorad Živanov ◽  
...  

Spatial distribution of soil organic carbon (SOC) is the result of a combination of various factors related to both the natural environment and anthropogenic activities. The aim of this study was to examine (i) the state of SOC in topsoil and subsoil of vineyards compared to the nearest forest, (ii) the influence of soil management on SOC, (iii) the variation in SOC content with topographic position, (iv) the intensity of soil erosion in order to estimate the leaching of SOC from upper to lower topographic positions, and (v) the significance of SOC for the reduction of soil’s susceptibility to compaction. The study area was the vineyard region of Niš, which represents a medium-sized vineyard region in Serbia. About 32% of the total land area is affected, to some degree, by soil erosion. However, according to the mean annual soil loss rate, the total area is classified as having tolerable erosion risk. Land use was shown to be an important factor that controls SOC content. The vineyards contained less SOC than forest land. The SOC content was affected by topographic position. The interactive effect of topographic position and land use on SOC was significant. The SOC of forest land was significantly higher at the upper position than at the middle and lower positions. Spatial distribution of organic carbon in vineyards was not influenced by altitude, but occurred as a consequence of different soil management practices. The deep tillage at 60–80 cm, along with application of organic amendments, showed the potential to preserve SOC in the subsoil and prevent carbon loss from the surface layer. Penetrometric resistance values indicated optimum soil compaction in the surface layer of the soil, while low permeability was observed in deeper layers. Increases in SOC content reduce soil compaction and thus the risk of erosion and landslides. Knowledge of soil carbon distribution as a function of topographic position, land use and soil management is important for sustainable production and climate change mitigation.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 650
Author(s):  
Jesús Aguilera-Huertas ◽  
Beatriz Lozano-García ◽  
Manuel González-Rosado ◽  
Luis Parras-Alcántara

The short- and medium—long-term effects of management and hillside position on soil organic carbon (SOC) changes were studied in a centenary Mediterranean rainfed olive grove. One way to measure these changes is to analyze the soil quality, as it assesses soil degradation degree and attempts to identify management practices for sustainable soil use. In this context, the SOC stratification index (SR-COS) is one of the best indicators of soil quality to assess the degradation degree from SOC content without analyzing other soil properties. The SR-SOC was calculated in soil profiles (horizon-by-horizon) to identify the best soil management practices for sustainable use. The following time periods and soil management combinations were tested: (i) in the medium‒long-term (17 years) from conventional tillage (CT) to no-tillage (NT), (ii) in the short-term (2 years) from CT to no-tillage with cover crops (NT-CC), and (iii) the effect in the short-term (from CT to NT-CC) of different topographic positions along a hillside. The results indicate that the SR-SOC increased with depth for all management practices. The SR-SOC ranged from 1.21 to 1.73 in CT0, from 1.48 to 3.01 in CT1, from 1.15 to 2.48 in CT2, from 1.22 to 2.39 in NT-CC and from 0.98 to 4.16 in NT; therefore, the soil quality from the SR-SOC index was not directly linked to the increase or loss of SOC along the soil profile. This demonstrates the time-variability of SR-SOC and that NT improves soil quality in the long-term.


2015 ◽  
Vol 45 (8) ◽  
pp. 998-1005 ◽  
Author(s):  
Daniel P. Soto ◽  
Pablo J. Donoso ◽  
Christian Salas ◽  
Klaus J. Puettmann

We evaluated effects of topsoil scarification by heavy machinery on growth of two valuable, shade-intolerant tree species — Nothofagus dombeyi (Mirb.) Oerst. (evergreen and considered to be very plastic to different soil fertility levels) and Nothofagus alpina (Poepp. & Endl.) Oerst. (deciduous and considered to be sensitive to soil fertility) — seedlings that were underplanted in Nothofagus old-growth forests, which were subjected to shelterwood cuttings without the final cut in the Chilean Andes. We compared tree basal diameter growth as it responds to light availability and soil compaction (as measured by resistance to penetration) by fitting a growth model based on the Michaelis–Menten equation. Predicted growth of N. dombeyi was greater than N. alpina in high and low light levels; however, there were no significant differences between the species. Both species showed significant differences at high levels of penetration resistance (>2000 kPa). Differences for N. dombeyi occurred above ∼40% in total light, and differences occurred for N. alpina above ∼20% in total light. However, they were not different when compared at low and intermediate levels of penetration resistance. The results suggest that partial shelterwood cuts may provide adequate light levels to achieve appropriate growth of underplanted Nothofagus seedlings. However, if regeneration of N. alpina is desired, scarification of topsoil needs to be implemented with more caution in canopy openings, as traffic and soil removal by heavy machinery can have detrimental effects on growth of this species and other species that are more sensitive to soil compaction.


2013 ◽  
Vol 149 ◽  
pp. 141-148 ◽  
Author(s):  
Xiaoqin Dai ◽  
Yunsheng Li ◽  
Zhu Ouyang ◽  
Huimin Wang ◽  
G.V. Wilson

2003 ◽  
Vol 60 (3) ◽  
pp. 581-586 ◽  
Author(s):  
Ildegardis Bertol ◽  
Eloy Lemos Mello ◽  
Jean Cláudio Guadagnin ◽  
Almir Luis Vedana Zaparolli ◽  
Marcos Roberto Carrafa

Water erosion causes soil degradation, which is closely related to nutrient losses either in, the soluble form or adsorbed to soil particles, depending mainly on the adopted soil management system. This study was carried out in São José do Cerrito, SC, Brazil, between March 2000 and June 2001. The objective was to quantify available nitrogen, phosphorus, potassium, calcium and magnesium losses in water erosion obtained with simulated rainfall in the following soil management systems: conventional tillage with no-crop (bare soil) (BS), conventional tillage with soybean (CT), reduced tillage with soybean (RT), no tillage with soybean on a desiccated and burned natural pasture (DBNP), and no tillage with soybean on a desiccated natural pasture (DNP). A rotating boom rainfall simulator was used to perform three rainfall tests with constant intensity of 64 mm h-1 and sufficient duration to reach constant runoff rate, on a clayey-loam, well-structured Typic Hapludox, with an average slope of 0.18 m m-1. The first test was carried out five days before soybean emergence and the second and third at 30 and 60 days, respectively. The nutrient concentration in water and total losses of nitrogen, phosphorus, potassium, calcium and magnesium were higher under CT than in the other soil management systems.


2016 ◽  
Vol 38 (4) ◽  
Author(s):  
RICARDO SFEIR DE AGUIAR ◽  
PAULO VICENTE CONTADOR ZACCHEO ◽  
CARMEN SILVIA VIEIRA JANEIRO NEVES ◽  
MARCELO SFEIR DE AGUIAR ◽  
FERNANDO TEIXEIRA DE OLIVEIRA

ABSTRACT The use of cover crops species may be an important strategy in the pursuit of sustainability of agroecosystems, considering benefits to soil, such as improvements of physical and chemical characteristics, and weed control. The objective of this study was to evaluate the effect of winter cover crops and other soil managements on chemical soil properties, on the cycle, on the production of the first cycle and on the fruit quality of banana cv. Nanicão Jangada in Andirá – PR, Brazil. The experiment was carried out in a commercial. Planting of banana suckers from the grower area occurred in the first half of March 2011, with a spacing of 2.40 m between rows and 1.90 m between plants. The experiment was designed in randomized blocks with four replications and six plants per plot. The six treatments were: black oat (Avenastrigosa Schreb), forage turnip (Raphanus sativus L. var. oleiferus), consortium of black oat and forage turnip, chicken litter, residues of banana plants, and bare ground. The evaluations were vegetative development and life cycle of banana plants, yield and quality of fruits, soil chemical characterstics, and fresh and dry mass of green manures. The results were submitted to ANOVA (F Test), and Tukey test at 5 % probability. Black oat and black oat with forage turnip consortium were superior in biomass production. Systems of soil management had no effect on the variables, except in the periods between planting and flowering and between planting and harvest, which were shorter in the treatment of soil management with crop residues, longer in the treatment with forage turnip, and intermediate in the other treatments.


2019 ◽  
Vol 74 (3) ◽  
pp. 19-32 ◽  
Author(s):  
JACEK JULIAN PRANAGAL ◽  
DOROTA TOMASZEWSKA-KROJAŃSKA ◽  
HALINA SMAL ◽  
SŁAWOMIR LIGĘZA

In the years 2014–2017, a field experiment was carried out, in which two types of waste were applied to soil. One of them was mineral waste – carboniferous rock from a hard coal mine, and the other – organic waste – post-fermentation sludge from agricultural biogas-producing plant. The experiment was an example of an action, in which soil management was associated with their drainage effects on the soil. The waste was applied to the light soil of low utility value, included in the V bonitation class (in polish soil quality classification) and the 6th complex of agricultural suitability (weak rye). According to the WRB classification, it was Haplic Podzol (PZha) developed from the post-glacial sand. The aim of the study was to analyze changes in soil compaction caused by a single introduction of waste. During the four-year study (2014–2017), the durability of these changes was also observed. It was found that the best effects of reducing the soil compaction were obtained as a result of the combined application of two wastes: carboniferous rock and post-fermentation sludge. Introduction of waste into the soil was also permanent, as differences resulting from the soil management continued in the fourth year of the experiment.


2021 ◽  
Vol 9 (1) ◽  
pp. 19
Author(s):  
Anca-Luiza Stănilă

In order to elucidate some aspects regarding the content of nutrients in the soil or humus, the bioaccumulation and mineralization process of organic matter and correction of the soils reaction in the experimental field, within the agricultural holding SC Orhideea SRL Plopsoru, Locality Daia, Giurgiu County, research has been done with chemical fertilizers with NPK and liming - Ca(OH)2 on argic chernozem in maize culture from the Burnas Plain in different doses.Obtaining appropriate agricultural production on argic chernozems is limited by a number of factors such as relief, clay loam, low-medium permeability just below the plowed horizon advanced degree of soil compaction, located between 20-35 cm from the surface (plow sole) and climatic conditions.


Sign in / Sign up

Export Citation Format

Share Document