scholarly journals Dynamics of Glyphosate and Aminomethylphosphonic Acid in Soil Under Conventional and Conservation Tillage

Author(s):  
Laura Carretta ◽  
Alessandra Cardinali ◽  
Andrea Onofri ◽  
Roberta Masin ◽  
Giuseppe Zanin

Abstract This study investigates the adsorption and dissipation of glyphosate and the formation/dissipation of AMPA in non-tilled (NT) and conventionally tilled (CT) soil at 0–5 and 5–20 cm depth. Glyphosate adsorption was mainly related to the different NT and CT soil properties (clay and amorphous Al oxides), whereas an effect of the soil management could not be identified. Glyphosate dissipation was initially fast, and it slowed down later. The initial glyphosate concentration in NT soil at 0–5 cm was significantly lower than the dose applied due to the interception by the weeds and crop residues. AMPA began to form early after treatment and persisted longer than glyphosate. The DT50 range was 8–18 days for glyphosate and 99–250 days for AMPA. Longer glyphosate and AMPA DT50 were observed in NT soil compared to CT soil but, for glyphosate, the difference was significant only at 5–20 cm. Higher glyphosate and AMPA concentrations were detected in NT than in CT soil at the end of the study at 0–5 cm. The differences in glyphosate and AMPA DT50 and persistence were mainly attributable to the influence of different NT and CT soil characteristics. However, other factors could have contributed to the different glyphosate and AMPA dynamics between the soils, like glyphosate wash-off from crop residues on NT soil with the rainfall, the delayed glyphosate return to the soil by weed root exudation or weeds decomposition, and the NT soil compaction which may have reduced the microbial degradation of glyphosate at low concentrations. Graphic abstract

2020 ◽  
Vol 19 (2) ◽  
pp. 151-160
Author(s):  
Marco Segalla Prazeres ◽  
Fabrício Tondello Barbosa ◽  
Ildegardis Bertol ◽  
Tercio Vaisnava Fehlauer

No-tillage is conservationist soil management for agricultural production and it is based on soil cover by crop residues and restricted mobilization to the sowing line. However, its structure can be affected by the excessive compaction resulting from the traffic of machines. The objective of this study was to evaluate soil physical properties and crop performance in no-tillage with and without scarification, combined with different successions of plant species, in a Humic Cambisol. For this, the species of black oat, wheat and forage turnip were cultivated in winter, and later, corn and beans in summer. Soil samples were collected at the beginning and at the end of the experimental period, while evaluations of plant yield were carried out in the final stage of development. Soil scarification reduces relative density (RD) and soil resistance to penetration (RP) after preparation of soil, with effect restricted to the surface layer. Such effects persist for one year, however RD and RP increase over time, regardless of soil management. RP is more sensitive for evaluation of soil compaction and correlates positively with RD, with exponential adjustment. The aerial biomass of black oat, wheat and forage turnip was not affected by soil scarification, and crop yield of beans and corn showed to be more related to the previous cultivation than the scarification in no-tillage.


2021 ◽  
Vol 24 (4) ◽  
pp. 181-186
Author(s):  
Gholamhussein Shahgholi ◽  
Abdolmajid Moinfar

Abstract The advancement of technology and increasing use of mechanization in agriculture, as well as increasing size of agricultural machinery for farm capacity improvement, have led to soil compaction. In developed countries, various reports of the soil compaction impacts on the reduction of agricultural products have been provided. In developing countries, soil compaction represents a less-known issue and a its destructive nature in agriculture has not been sufficiently addressed. Furthermore, in developed countries, the soil is rich in organic matter due to conservation tillage; however, in Iran, conservation tillage is not possible to perform because of traditional agriculture and using old agricultural machinery. Therefore, plant residues are either removed from fields, or burned. However, sufficient content of organic matter in field can contribute to soil compaction mitigation. The aim of this study was to investigate the effect of percentage of crop residues and their size on soil compaction at different soil moisture contents. For these purposes, five different soil moisture contents (8, 10, 12, 14 and 16% based on dry soil weight) and 4 residue rates at 3 fragmentation sizes were observed in terms of soil compaction. At all different soil moisture contents and residue sizes, with increasing percentage of added straw to the soil, the soil displacement increased. Moreover, as the straw size increased, the initial displacement during compression decreased, e.g., the maximum displacements for straw percentage of 12% and soil moisture of 8% were 64, 62 and 60 mm considering the straw sizes of 1, 2.5 and 5 cm, respectively. With high residue percentage, the final soil density and soil compaction were lower due to the low specific density of straw relative to soil. Furthermore, with high percentage of straw, more deformations and displacements were occurred in the mixture due to large deformation of straws. The density changes of soil-straw mixture were more significant at high residue percentages.


Author(s):  
V. Dumych ◽  

The purpose of research: to improve the technology of growing flax in the Western region of Ukraine on the basis of the introduction of systems for minimizing tillage, which will increase the yield of trusts and seeds. Research methods: field, laboratory, visual and comparative calculation method. Research results: Field experiments included the study of three tillage systems (traditional, canning and mulching) and determining their impact on growth and development and yields of trusts and flax seeds. The traditional tillage system included the following operations: plowing with a reversible plow to a depth of 27 cm, cultivation with simultaneous harrowing and pre-sowing tillage. The conservation system is based on deep shelfless loosening of the soil and provided for chiseling to a depth of 40 cm, disking to a depth of 15 cm, cultivation with simultaneous harrowing, pre-sowing tillage. During the implementation of the mulching system, disking to a depth of 15 cm, cultivation with simultaneous harrowing and pre-sowing tillage with a combined unit was carried out. Tillage implements and machines were used to perform tillage operations: disc harrow BDVP-3,6, reversible plow PON-5/4, chisel PCh-3, cultivator KPSP-4, pre-sowing tillage unit LK-4. The SZ-3,6 ASTPA grain seeder was used for sowing long flax of the Kamenyar variety. Simultaneously with the sowing of flax seeds, local application of mineral fertilizers (nitroammophoska 2 c/ha) was carried out. The application of conservation tillage allows to obtain the yield of flax trust at the level of 3,5 t/ha, which is 0,4 t/ha (12.9 %) more than from the area of traditional tillage and 0,7 t/ha (25 %) in comparison with mulching. In the area with canning treatment, the seed yield was the highest and amounted to 0,64 t/ha. The difference between this option and traditional and mulching tillage reaches 0,06 t/ha (10,3 %) and 0.10 t/ha (18.5 %), respectively. Conclusions. Preservation tillage, which is based on shelf-free tillage to a depth of 40 cm and disking to a depth of 15 cm has a positive effect on plant growth and development, yield and quality of flax.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1438
Author(s):  
Snežana Jakšić ◽  
Jordana Ninkov ◽  
Stanko Milić ◽  
Jovica Vasin ◽  
Milorad Živanov ◽  
...  

Spatial distribution of soil organic carbon (SOC) is the result of a combination of various factors related to both the natural environment and anthropogenic activities. The aim of this study was to examine (i) the state of SOC in topsoil and subsoil of vineyards compared to the nearest forest, (ii) the influence of soil management on SOC, (iii) the variation in SOC content with topographic position, (iv) the intensity of soil erosion in order to estimate the leaching of SOC from upper to lower topographic positions, and (v) the significance of SOC for the reduction of soil’s susceptibility to compaction. The study area was the vineyard region of Niš, which represents a medium-sized vineyard region in Serbia. About 32% of the total land area is affected, to some degree, by soil erosion. However, according to the mean annual soil loss rate, the total area is classified as having tolerable erosion risk. Land use was shown to be an important factor that controls SOC content. The vineyards contained less SOC than forest land. The SOC content was affected by topographic position. The interactive effect of topographic position and land use on SOC was significant. The SOC of forest land was significantly higher at the upper position than at the middle and lower positions. Spatial distribution of organic carbon in vineyards was not influenced by altitude, but occurred as a consequence of different soil management practices. The deep tillage at 60–80 cm, along with application of organic amendments, showed the potential to preserve SOC in the subsoil and prevent carbon loss from the surface layer. Penetrometric resistance values indicated optimum soil compaction in the surface layer of the soil, while low permeability was observed in deeper layers. Increases in SOC content reduce soil compaction and thus the risk of erosion and landslides. Knowledge of soil carbon distribution as a function of topographic position, land use and soil management is important for sustainable production and climate change mitigation.


2016 ◽  
Vol 38 (4) ◽  
Author(s):  
RICARDO SFEIR DE AGUIAR ◽  
PAULO VICENTE CONTADOR ZACCHEO ◽  
CARMEN SILVIA VIEIRA JANEIRO NEVES ◽  
MARCELO SFEIR DE AGUIAR ◽  
FERNANDO TEIXEIRA DE OLIVEIRA

ABSTRACT The use of cover crops species may be an important strategy in the pursuit of sustainability of agroecosystems, considering benefits to soil, such as improvements of physical and chemical characteristics, and weed control. The objective of this study was to evaluate the effect of winter cover crops and other soil managements on chemical soil properties, on the cycle, on the production of the first cycle and on the fruit quality of banana cv. Nanicão Jangada in Andirá – PR, Brazil. The experiment was carried out in a commercial. Planting of banana suckers from the grower area occurred in the first half of March 2011, with a spacing of 2.40 m between rows and 1.90 m between plants. The experiment was designed in randomized blocks with four replications and six plants per plot. The six treatments were: black oat (Avenastrigosa Schreb), forage turnip (Raphanus sativus L. var. oleiferus), consortium of black oat and forage turnip, chicken litter, residues of banana plants, and bare ground. The evaluations were vegetative development and life cycle of banana plants, yield and quality of fruits, soil chemical characterstics, and fresh and dry mass of green manures. The results were submitted to ANOVA (F Test), and Tukey test at 5 % probability. Black oat and black oat with forage turnip consortium were superior in biomass production. Systems of soil management had no effect on the variables, except in the periods between planting and flowering and between planting and harvest, which were shorter in the treatment of soil management with crop residues, longer in the treatment with forage turnip, and intermediate in the other treatments.


2020 ◽  
Vol 23 (1) ◽  
pp. 1-6
Author(s):  
Jana Galambošová ◽  
Miroslav Macák ◽  
Vladimír Rataj ◽  
Marek Barát ◽  
Paula Misiewicz

AbstractIncrease in machinery size and its random traffic at fields cause soil compaction resulting in damage of soil structure and degradation of soil functions. Nowadays, rapid methods to detect soil compaction at fields are of high interest, especially proximal sensing methods such as electrical conductivity measurements. The aim of this work was to investigate whether electromagnetic induction (EMI) could be used to determine trafficked areas in silty clay soil. Results of randomized block experiment showed a high significant difference (p <0.01) in EMI data measured between compacted and non-compacted areas. EMI readings from compacted areas were, on average, 11% (shallow range) and 9% (deep range) higher than non-compacted areas, respectively. This difference was determined in both shallow and deep measuring ranges, indicating that the difference in soil compaction was detected in both topsoil and subsoil. Furthermore, the data was found to have a significant spatial variability, suggesting that, in order to detect the increase in EMI (which shows the increase in soil compaction), data within close surrounding area should be included in the analyses. Correlation coefficient of EMI and penetration resistance (average moisture content 32.5% and 30.8% for topsoil and subsoil) was found to be 0.66.


2019 ◽  
Vol 74 (3) ◽  
pp. 19-32 ◽  
Author(s):  
JACEK JULIAN PRANAGAL ◽  
DOROTA TOMASZEWSKA-KROJAŃSKA ◽  
HALINA SMAL ◽  
SŁAWOMIR LIGĘZA

In the years 2014–2017, a field experiment was carried out, in which two types of waste were applied to soil. One of them was mineral waste – carboniferous rock from a hard coal mine, and the other – organic waste – post-fermentation sludge from agricultural biogas-producing plant. The experiment was an example of an action, in which soil management was associated with their drainage effects on the soil. The waste was applied to the light soil of low utility value, included in the V bonitation class (in polish soil quality classification) and the 6th complex of agricultural suitability (weak rye). According to the WRB classification, it was Haplic Podzol (PZha) developed from the post-glacial sand. The aim of the study was to analyze changes in soil compaction caused by a single introduction of waste. During the four-year study (2014–2017), the durability of these changes was also observed. It was found that the best effects of reducing the soil compaction were obtained as a result of the combined application of two wastes: carboniferous rock and post-fermentation sludge. Introduction of waste into the soil was also permanent, as differences resulting from the soil management continued in the fourth year of the experiment.


2002 ◽  
Vol 362 (3) ◽  
pp. 749-754 ◽  
Author(s):  
Ziedulla Kh. ABDULLAEV ◽  
Marina E. BODROVA ◽  
Boris V. CHERNYAK ◽  
Dmitry A. DOLGIKH ◽  
Ruth M. KLUCK ◽  
...  

A cytochrome c mutant lacking apoptogenic function but competent in electron transfer and antioxidant activities has been constructed. To this end, mutant species of horse and yeast cytochromes c with substitutions in the N-terminal α-helix or position 72 were obtained. It was found that yeast cytochrome c was much less effective than the horse protein in activating respiration of rat liver mitoplasts deficient in endogenous cytochrome c as well as in inhibition of H2O2 production by the initial segment of the respiratory chain of intact rat heart mitochondria. The major role in the difference between the horse and yeast proteins was shown to be played by the amino acid residue in position 4 (glutamate in horse, and lysine in yeast; horse protein numbering). A mutant of the yeast cytochrome c containing K4E and some other ‘horse’ modifications in the N-terminal α-helix, proved to be (i) much more active in electron transfer and antioxidant activity than the wild-type yeast cytochrome c and (ii), like the yeast cytochrome c, inactive in caspase stimulation, even if added in 400-fold excess compared with the horse protein. Thus this mutant seems to be a good candidate for knock-in studies of the role of cytochrome c-mediated apoptosis, in contrast with the horse K72R, K72G, K72L and K72A mutant cytochromes that at low concentrations were less active in apoptosis than the wild-type, but were quite active when the concentrations were increased by a factor of 2–12.


1986 ◽  
Vol 234 (3) ◽  
pp. 547-553 ◽  
Author(s):  
T Pozzan ◽  
F Di Virgilio ◽  
L M Vicentini ◽  
J Meldolesi

Ca2+ homoeostasis was investigated in pheochromocytoma neurosecretory (PC12) cells both before and after treatment with nerve growth factor, which induces a neuronal-like differentiation accompanied by a large increase in the number of muscarinic receptors. The resting concentration of free cytosolic Ca2+, [Ca2+]i, measured by the quin2 technique, was found to be higher and more variable in differentiated cells. Moreover, the [Ca2+]i rises induced by the Ca2+ ionophore ionomycin and by depolarizing concentrations of KC1 were greater and more transient. Exposure to carbachol induced modest, but long-lasting, [Ca2+]i rises, which were faster and greater in differentiated than in non-differentiated cells. These effects were due to the activation of the muscarinic receptor, because they were unaffected by nicotinic blockers (hexamethonium and D-tubocurarine) and completely eliminated by low concentrations of the muscarinic antagonists atropine and pirenzepine [IC50 (concn. causing 50% inhibition) = 2 and 60 nM respectively]. The muscarinic-receptor-dependent [Ca2+]i rises were the result of two concomitant processes: (1) redistribution of Ca2+ from cytoplasmic stores to the cytosol, possibly mediated by generation of inositol 1,4,5-trisphosphate as a consequence of the muscarinic-receptor-coupled hydrolysis of polyphosphoinositides, and (2) increased Ca2+ influx through a pathway of the plasmalemma insensitive to verapamil and thus different from the voltage-dependent Ca2+ channel. The existence of this second process was documented: (a) by the difference of the [Ca2+]i responses brought about by carbachol in Ca2+-containing and Ca2+-free media; (b) by the occurrence of [Ca2+]i rise and increased 45Ca accumulation in cells exposed to 1 mM-CaCl2 after having been treated for 2 min with carbachol in Ca2+-free medium; (c) by typical differences in the quin2 signal kinetics observed in parallel samples of PC12 cells loaded with different concentrations of the dye.


Sign in / Sign up

Export Citation Format

Share Document