scholarly journals Compressive strength of partially stiffened cylinders at elevated temperatures

2020 ◽  
Vol 19 (1) ◽  
pp. 131-142
Author(s):  
Egler Araque ◽  
Carlos Graciano ◽  
David G. Zapata-Medina ◽  
Octavio Andrés González-Estrada

This work presents the finite element analysis of partially stiffened cylinders subjected to axial compression at elevated temperatures. The compressive strength is calculated for self-weight conditions and the influence of the temperature on the material response is also investigated. In the oil industry, pressure vessels are commonly used operating at complex design conditions such as high-pressure profiles and/or elevated temperature gradients which affect considerably the structural response of inner components. Among them, risers become sensitive steel elements withstanding heavy compressive loading due to self-weight, as well as, insulation elements added toprotect them from the elevated temperature gradient. Most risers structurally fail at the bottom end due to buckling caused by self-weight and temperature effects. To remediate this situation and to guarantee the integrity of the riser, longitudinal stiffeners are welded at the bottom end. Hence, a proper determination of the compressive strength of the cylinder, taking into account the influence of the longitudinal stiffening and the corresponding temperature, is required.Results indicate that the use oflongitudinal stiffeners in deformed cylinders increases the strength to buckling in percentages that vary according to the cross-section of the profiles.

2011 ◽  
Vol 261-263 ◽  
pp. 416-420 ◽  
Author(s):  
Fu Ping Jia ◽  
Heng Lin Lv ◽  
Yi Bing Sun ◽  
Bu Yu Cao ◽  
Shi Ning Ding

This paper presents the results of elevated temperatures on the compressive of high fly ash content concrete (HFCC). The specimens were prepared with three different replacements of cement by fly ash 30%, 40% and 50% by mass and the residual compressive strength was tested after exposure to elevated temperature 250, 450, 550 and 650°C and room temperature respectively. The results showed that the compressive strength apparently decreased with the elevated temperature increased. The presence of fly ash was effective for improvement of the relative strength, which was the ratio of residual compressive strength after exposure to elevated temperature and ordinary concrete. The relative compressive strength of fly ash concrete was higher than those of ordinary concrete. Based on the experiments results, the alternating simulation formula to determine the relationship among relative strength, elevated temperature and fly ash replacement is developed by using regression of results, which provides the theoretical basis for the evaluation and repair of HFCC after elevated temperature.


Author(s):  
Antoinette M. Maniatty ◽  
David J. Littlewood ◽  
Jing Lu

In order to better understand and predict the intragrain heterogeneous deformation in a 6063 aluminum alloy deformed at an elevated temperature, when additional slip systems beyond the usual octahedral slip systems are active, a modeling framework for analyzing representative polycrystals under these conditions is presented. A model polycrystal that has a similar microstructure to that observed in the material under consideration is modeled with a finite element analysis. A large number of elements per grain (more than 1000) are used to capture well the intragranular heterogeneous response. The polycrystal model is analyzed with three different sets of initial orientations. A compression test is used to calibrate the material model, and a macroscale simulation of the compression test is used to define the deformation history applied to the model polycrystal. In order to reduce boundary condition effects, periodic boundary conditions are applied to the model polycrystal. To investigate the effect of additional slip systems expected to be active at elevated temperatures, the results considering only the 12 {111}⟨110⟩ slip systems are compared to the results with the additional 12 {110}⟨110⟩ and {001}⟨110⟩ slip systems available (i.e., 24 available slip systems). The resulting predicted grain structure and texture are compared to the experimentally observed grain structure and texture in the 6063 aluminum alloy compression sample as well as to the available data in the literature, and the intragranular misorientations are studied.


1999 ◽  
Vol 122 (1) ◽  
pp. 62-68 ◽  
Author(s):  
A. L. Gyekenyesi

This study focuses on the fully reversed fatigue behavior exhibited by a carbon fiber/polyimide resin woven laminate at room and elevated temperatures. Nondestructive video edge view microscopy and destructive sectioning techniques were used to study the microscopic damage mechanisms that evolved. The elastic stiffness was monitored and recorded throughout the fatigue life of the coupon. In addition, residual compressive strength tests were conducted on fatigue coupons with various degrees of damage as quantified by stiffness reduction. Experimental results indicated that the monotonic tensile properties were only minimally influenced by temperature, while the monotonic compressive and fully reversed fatigue properties displayed greater reductions due to the elevated temperature. The stiffness degradation, as a function of cycles, consisted of three stages; a short-lived high degradation period, a constant degradation rate segment covering the majority of the life, and a final stage demonstrating an increasing rate of degradation up to failure. Concerning the residual compressive strength tests at room and elevated temperatures, the elevated temperature coupons appeared much more sensitive to damage. At elevated temperatures, coupons experienced a much larger loss in compressive strength when compared to room temperature coupons with equivalent damage. The fatigue damage accumulation law proposed for the model incorporates a scalar representation for damage, but admits a multiaxial, anisotropic evolutionary law. The model predicts the current damage (as quantified by residual stiffness) and remnant life of a composite that has undergone a known load at temperature. The damage/life model is dependent on the applied multiaxial stress state as well as temperature. Comparisons between the model and data showed good predictive capabilities concerning stiffness degradation and cycles to failure. [S0742-4795(00)01001-2]


Author(s):  
Shunji Kataoka ◽  
Takuya Sato

Creep-fatigue damage is one of the dominant failure modes for pressure vessels and piping used at elevated temperatures. In the design of these components the inelastic behavior should be estimated accurately. An inelastic finite element analysis is sometimes employed to predict the creep behavior. However, this analysis needs complicated procedures and many data that depend on the material. Therefore the design is often based on a simplified inelastic analysis based on the elastic analysis result, as described in current design codes. A new, simplified method, named, Stress Redistribution Locus (SRL) method, was proposed in order to simplify the analysis procedure and obtain reasonable results. This method utilizes a unique estimation curve in a normalized stress-strain diagram which can be drawn regardless of the magnitude of thermal loading and constitutive equations of the materials. However, the mechanism of SRL has not been fully investigated. This paper presents results of the parametric inelastic finite element analyses performed in order to investigate the mechanism of SRL around a structural discontinuity, like a shell-skirt intersection, subjected to combined secondary bending stress and peak stress. This investigation showed that SRL comprises a redistribution of the peak and secondary stress components and that although these two components exhibit independent redistribution behavior, they are related to each other.


2012 ◽  
Vol 268-270 ◽  
pp. 3-6
Author(s):  
Tao Huang ◽  
Yi Yan Zhang

A numerical investigation was conducted to determine the mechanical behavior of C/SiC composites bolt under room temperature and elevated temperature. The influence of the contact friction coefficient on the stress and displacement was considered in the finite element analysis. The FEA results provided some valuable data for the engineering application of C/SiC composites bolt.


Materials ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1254
Author(s):  
Jin-Hee Ahn ◽  
Seok-Hyeon Jeon ◽  
Young-Soo Jeong ◽  
Kwang-Il Cho ◽  
Jungwon Huh

Local corrosion damage of steel structures can occur due to damage to the paint-coated surface of structures. Such damage can affect the structural behavior and performance of steel structures. Compressive loading tests were, thus, carried out in this study to examine the effect of local corrosion damage on the structural behavior and strength of tubular members. Artificial cross-sectional damage on the surface of the tubular members was introduced to reflect the actual corroded damage under exposure to a corrosion environment. The compressive failure modes and compressive strengths of the tubular members were compared according to the localized cross-sectional damage. The compressive loading test results showed that the compressive strengths were affected by the damaged width within a certain range. In addition, finite element analysis (FEA) was conducted with various parameters to determine the effects of the damage on the failure mode and compressive strength of the stub column. From the FEA results, the compressive strength was decreased proportionally with the equivalent cross-sectional area ratio and damaged volume ratio.


Author(s):  
N. Rino Nelson ◽  
N. Siva Prasad ◽  
A. S. Sekhar

Gasketed flange joint is a vital component in pressure vessels and piping systems. Flange joint is usually subjected to bending load due to expansion, wind load, self-weight, etc. Most of the flange design methods use equivalent pressure to include the effect of external bending loads. It becomes complex when the joint is subjected to bending load at elevated temperatures, due to the nonlinear behavior of gasket material. In the present work, performance of the flange joint has been studied under external bending load at elevated temperatures. A 3D finite element model is developed, considering the nonlinearities in the joint due to gasket material and contact between its members along with their temperature dependent material properties. The performance of the joint under different bolt preloads, internal fluid pressures and temperatures is studied. Flange joint with two gaskets (twin gasketed joint) placed beside each other radially, is also analyzed under external bending moment. The maximum allowable bending moments at different internal temperatures, for single and twin gasketed joints with spiral wound gasket are arrived.


Author(s):  
Yuya Omiya ◽  
Tadatoshi Watanabe ◽  
Masahiro Fujii ◽  
Haruka Yamamoto

In this study, the creep deformation in the threaded joint are discussed using a finite element method, and evaluated the influence of the dimensions of bolt and clamped parts. The stress and creep strain distributions are calculated using the Finite Element Analysis. The occurrence and the propagation of the creep deformation and influence of the creep deformation on the axial bolt force were discussed. It was found that the creep deformation occurred at the bearing surfaces and the engagement screw thread mainly at the elevated temperature. The creep deformation was a cause of the reduction in axial bolt force.


2014 ◽  
Vol 905 ◽  
pp. 300-305
Author(s):  
Salim Barbhuiya ◽  
Tommy Lo ◽  
Shazim Memon ◽  
Hamid Nikraz

This research is aimed at investigating the effect of elevated temperature, curing duration and curing methods on the strength recovery of lightweight concrete. Concrete specimens were subjected to elevated temperatures ranging from 300 to 600°C in a controlled heating environment. The specimens were subjected to three types of curing conditions: continuous water curing at 27°C, curing in a relative humidity of 95% at 27°C and curing in water at 60°C for three days and then curing in water at 27°C. The curing duration ranged from 7 to 56 days. The results indicated that the re-curing of concrete for the recovery of compressive strength is most effective in the temperature range from 300 to 500°C. For temperatures outside the range of 300 to 500°C, re-curing was either not effective or had limited application.


2018 ◽  
Vol 6 (3) ◽  
pp. 1-14
Author(s):  
Semiha Akçaözoğlu

In this study, the effect of waste PET as lightweight aggregate (WPLA) replacement with conventional aggregate on the some physical and mechanical properties and residual compressive strength of concrete was investigated. For this purpose, five different mixtures were prepared (the reference mixture and four WPLA mixtures including 30%, 40%, 50% and 60% waste PET aggregate by volume). The fresh and dry unit weights, compressive strengths, flexural-tensile strengths, water absorption and porosity ratios of the mixtures were measured. In addition the specimens exposed to elevated temperatures at 150, 300 and 450 °C and the residual compressive strengths were measured. Test results indicated that the unit weight, compressive strength and flexural-tensile strength of the specimens decreased as the amount of WPLA increased in concrete. After exposing to elevated temperature, WPLA mixtures retained their structural integrity and compressive strengths at 150 °C and 300 °C. However there was a significant decrease in the residual compressive strength values of WPLA mixtures at 450 °C.


Sign in / Sign up

Export Citation Format

Share Document