scholarly journals Two-Dimensional Numerical Study of the Microclimate Generated in Three Screenhouses for the Climatic Conditions of the Colombian Caribbean

2021 ◽  
Vol 39 (2) ◽  
pp. 460-468
Author(s):  
Edwin Villagran

Insect proof screenhouse is increasingly used in tropical countries with a warm climate, as this type of structure is more economical than greenhouses and gives farmers the opportunity to optimize their production systems. In this work we used an experimentally validated two-dimensional numerical model, the objective was to study the air flow patterns and the thermal and hygrometric behavior of three screenhouses differentiated in their geometric configuration of the roof area and under four (4) outside wind speeds. The results obtained allowed us to find that the airflow speed inside the screenhouse can be maximized with respect to the most critical scenario by 29% for a wind speed of 0.5 ms-1 and up to 292% for a wind speed of 3.0 ms-1, which generates reductions in the average temperature inside the structure of -0.2℃ (0.5 ms-1) and up to -2.2℃ (3 ms-1). While the relative humidity presented values of 1.6% and 6.3% higher for these same speeds.

Author(s):  
Rofail Salykhovich Rakhmanov ◽  
Elena Sergeevna Bogomolova ◽  
Denis Alekseevich Narutdinov ◽  
Yuriy Gennadievich Piskarev ◽  
Lyudmila Ignatievna Tokareva

Determined the cold periods of the year in different weather and climatic conditions of the Krasnoyarsk Territory. We assessed the health risk of the population under the influence of temperature and wind speed in an open area according to the wind-cold index (which determines the comfort and discomfort of the weather). The average monthly daily, average monthly minimum temperatures and wind speeds were estimated for 10 years (2010–2019). Wind speed was assessed using the Bothford scale. In terms of ambient temperature, the cold period lasted: subarctic zone (Norilsk) — 5, moderate continental (Krasnoyarsk and Minusinsk) — 3 months. According to the wind-cold index (in terms of average temperature and wind speed), the period of severe weather in the subarctic zone lasted from 6 to 7 months a year. Three months of the year, the meteorological perception was assessed as «very» and 1 month — as «extremely cold». In the region of Krasnoyarsk, as well as in Minusinsk, the cold «uncomfortable period» was lengthened by 1 month. The health risk under the combined influence of the minimum temperature and maximum wind increased in the subarctic zone up to 8, moderate continental up to 5 (Krasnoyarsk) — 5–6 (Minusinsk) months. In the area of Norilsk, the period, assessed as «extremely cold, exposed parts of the body can be supercooled by 10 minutes,» extended by 4 months, in Krasnoyarsk such a period was possible in January, Minusinsk was recorded in January and February. In the conditions of one climatic zone (Krasnoyarsk, Minusinsk), regional features of weather and climatic characteristics (duration of cold and warm periods, temperature, wind speed, severity and duration of periods of severe weather), which can affect the well-being and state of health of the population, have been identified.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 125
Author(s):  
Eduardo Freitas ◽  
Pedro Pontes ◽  
Ricardo Cautela ◽  
Vaibhav Bahadur ◽  
João Miranda ◽  
...  

This study addresses the combination of customized surface modification with the use of nanofluids, to infer on its potential to enhance pool-boiling heat transfer. Hydrophilic surfaces patterned with superhydrophobic regions were developed and used as surface interfaces with different nanofluids (water with gold, silver, aluminum and alumina nanoparticles), in order to evaluate the effect of the nature and concentration of the nanoparticles in bubble dynamics and consequently in heat transfer processes. The main qualitative and quantitative analysis was based on extensive post-processing of synchronized high-speed and thermographic images. To study the nucleation of a single bubble in pool boiling condition, a numerical model was also implemented. The results show an evident benefit of using biphilic patterns with well-established distances between the superhydrophobic regions. This can be observed in the resulting plot of the dissipated heat flux for a biphilic pattern with seven superhydrophobic spots, δ = 1/d and an imposed heat flux of 2132 w/m2. In this case, the dissipated heat flux is almost constant (except in the instant t* ≈ 0.9 when it reaches a peak of 2400 W/m2), whilst when using only a single superhydrophobic spot, where the heat flux dissipation reaches the maximum shortly after the detachment of the bubble, dropping continuously until a new necking phase starts. The biphilic patterns also allow a controlled bubble coalescence, which promotes fluid convection at the hydrophilic spacing between the superhydrophobic regions, which clearly contributes to cool down the surface. This effect is noticeable in the case of employing the Ag 1 wt% nanofluid, with an imposed heat flux of 2132 W/m2, where the coalescence of the drops promotes a surface cooling, identified by a temperature drop of 0.7 °C in the hydrophilic areas. Those areas have an average temperature of 101.8 °C, whilst the average temperature of the superhydrophobic spots at coalescence time is of 102.9 °C. For low concentrations as the ones used in this work, the effect of the nanofluids was observed to play a minor role. This can be observed on the slight discrepancy of the heat dissipation decay that occurred in the necking stage of the bubbles for nanofluids with the same kind of nanoparticles and different concentration. For the Au 0.1 wt% nanofluid, a heat dissipation decay of 350 W/m2 was reported, whilst for the Au 0.5 wt% nanofluid, the same decay was only of 280 W/m2. The results of the numerical model concerning velocity fields indicated a sudden acceleration at the bubble detachment, as can be qualitatively analyzed in the thermographic images obtained in this work. Additionally, the temperature fields of the analyzed region present the same tendency as the experimental results.


Author(s):  
Yujie Lin ◽  
Yumeng Jin ◽  
Hong Jin

As residential environment science advances, the environmental quality of outdoor microclimates has aroused increasing attention of scholars majoring in urban climate and built environments. Taking the microclimate of a traditional residential area in a severe cold city as the study object, this study explored the influence of spatial geometry factors on the microclimate of streets and courtyards by field measurements, then compared the differences in microclimate of distinct public spaces. The results are as follows. (1) The temperature of a NE-SW (Northeast-Southwest) oriented street was higher than that of a NW-SE (Northwest-Southeast) oriented street in both summer and winter, with an average temperature difference of 0.7–1.4 °C. The wind speeds in the latter street were slower, and the difference in average wind speed was 0.2 m/s. (2) In the street with a higher green coverage ratio, the temperature was much lower, a difference that was more obvious in summer. The difference in mean temperature was up to 1.2 °C. The difference in wind speed between the two streets was not obvious in winter, whereas the wind speed in summer was significantly lower for the street with a higher green coverage ratio, and the difference in average wind speed was 0.7 m/s. (3) The courtyards with higher SVF (sky view factor) had higher wind speeds in winter and summer, and the courtyards with larger SVF values had higher temperatures in summer, with an average temperature difference of 0.4 °C. (4) When the spaces had the same SVF values and green coverage ratios, the temperature of the street and courtyard were very similar, in both winter and summer. The wind speed of the street was significantly higher than the courtyard in summer, and the wind speed difference was 0.4 m/s.


2018 ◽  
Vol 20 (1) ◽  
pp. 30 ◽  
Author(s):  
Ichsan Setiawan ◽  
Mohammad Irham

A numerical model of wave trajectory using shoaling and refraction formula was proposed in the coastal waters of Lhoknga, Aceh Besar, Indonesia. The developed model used a two dimensional (2D) numerical methods for wave trajectory with the input of wave height and period; 0.62 m and 8 second for high tide and 0.47 m and 6 second for low tide. This model was tested on site during low tide and high tide conditions for verification. The purpose of this numerical study is to trace the distribution of wave trajectory because of shoaling, wave breaking, and wave refraction. The model determines the wave height and crest pattern of the ray wave trajectory. The simulation result shows the pattern of the wave propagation at Lhoknga beach moves from the northwest to the east and south of the coast. The model also informs that the maximum wave height during high tide condition is 1.72 m and 1.31 m during low tide condition. The result indicates that the coast of Lhoknga has moderate wave conditions caused by a gentle beach bathymetry slope.


2018 ◽  
Vol 42 ◽  
pp. 01013
Author(s):  
Theodorus T. Wibowo ◽  
Faizal H. Daulay ◽  
Kutut Suryopratomo ◽  
Rachmawan Budiarto

Low wind speeds is one of the challenges of wind energy in several countries. The innovative design of wind speed enhancer is one of many solution of those challenges. The wind speed enhancer using the principle of constriction where the speed will be increased at a narrower area. The innovative design wind speed enhancer is unique because of the wind turbines are installed close to the ground surface. The uniqueness can reduce the cost of installation, maintenance, and can reduce the possibility of damage caused by lightning. The proposed of wind speed enhancer design was shown to be successful in increasing the wind speed at venturi that reach 2.26 faster than wind speed at environment for variation of the funnel gap and 2.35 faster than wind speed at environment for variation of the throat diameter. This result is better than existing design. The results of this study is 21.5% better than existing design for variation of funnel gap and 24.2% better than existing design for variation of the throat diameter.


2014 ◽  
Vol 31 (3) ◽  
pp. 630-638 ◽  
Author(s):  
John Lillibridge ◽  
Remko Scharroo ◽  
Saleh Abdalla ◽  
Doug Vandemark

abstract SARAL—the Satellite with ARgos and ALtiKa—is the first satellite radar altimetry mission to fly a Ka-band instrument (AltiKa). Ocean backscatter measurements in the Ka band suffer larger signal attenuation due to water vapor and atmospheric liquid water than those from Ku-band altimeters. An attenuation algorithm is provided, based on radar propagation theory, which is a function of atmospheric pressure, temperature, water vapor, and liquid water content. Because of the nature of the air–sea interactions between wind and surface gravity waves, the shorter wavelength Ka-band backscatter exhibits a different relationship with wind speed than at Ku band, particularly at moderate to high wind speeds. This paper presents a new one-dimensional wind speed model, as a function of backscatter only, and a two-dimensional model, as a function of backscatter and significant wave height, tuned to AltiKa’s backscatter measurements. The performance of these new Ka-band altimeter wind speed models is assessed through validation with independent ocean buoy wind speeds. The results indicate wind measurement accuracy comparable to that observed at Ku band with only slightly elevated noise in the wind estimates.


2021 ◽  
Vol 39 (4) ◽  
pp. 1097-1106
Author(s):  
Edwin Villagrán

In developing countries, open field agricultural production is highly vulnerable to biotic and abiotic factors limiting crop productivity, generating economic losses and affecting food security. Therefore, one of the strategies that can improve these production systems is the implementation of the crops under cover technically adapted to the climatic and socioeconomic conditions of each region. The objective of this research was to analyze the thermal behavior and airflow patterns of an insect-proof screenhouse through computational fluid dynamics simulations using a 3D model. The results obtained for the multiannual monthly climatic conditions of a warm climate region in Panama showed that the airflow velocities inside the structure were lower between 76.8 and 80.2% with respect to the external velocity. The most critical scenarios showed temperature differences below 2℃ inside the screenhouse with respect to the outside. This value can be considered low as compared to the behavior of naturally ventilated greenhouses.


1986 ◽  
Vol 108 (2) ◽  
pp. 284-290 ◽  
Author(s):  
J. G. Georgiadis ◽  
I. Catton

A numerical study of buoyancy-driven two-dimensional convection in a fluid-saturated horizontal porous layer is reported emphasizing the nonlinear inertial effect on heat transport. The Forchheimer–Brinkman–Darcy–Boussinesq formulation and a single energy equation for the volume-average temperature are used. Closure to the wavenumber selection problem is sought through a criterion based on the Glansdorff and Prigogine theory of nonequilibrium thermodynamics. Good agreement with laboratory data and the analogy with the Rayleigh–Be´nard problem are corroborative facts which justify similar non-Darcian formulations and demonstrate the role of the quadratic inertial terms in decreasing the mean convective heat transfer across the layer.


Author(s):  
Yingyuan Liu ◽  
Leqin Wang ◽  
Zuchao Zhu

This work is purposed to study the flow characteristics of rotor pumps including cavitation. First, a simplified two-dimensional numerical model is developed and computing strategies of the numerical analysis for cavitation are set up, including the selection of cavitation model and its parameters. Second, the reliability and accuracy of the two-dimensional numerical model are verified by experimental results. Then, several factors affecting the cavitation are discussed, including the rotational speeds, pressure differences, clearance sizes, and inlet pressures. For different rotational speeds and pressure differences, the mass flow rates with cavitation are a little larger than that without cavitation, but the amplitudes of the mass flow rates with cavitation are much larger than that without cavitation. Meanwhile, the volume fraction of the water vapor increases with the increasing speeds and the decreasing pressure differences. However, compared with the influence of rotational speeds, the influence of the pressure differences on the vapor contents is relatively smaller. Regarding the clearance size, the smaller the clearance size is, the stronger the cavitation will be. Furthermore, the clearance size between two rotors has a larger effect on the cavitation than that between rotor and pump case. For inlet pressure, it has a little effect on the mass flow rates when cavitation is not considered, but it presents a remarkable effect for the model with cavitation. In addition, the peaks of the volume fractions of vapor and the mass flow rates generally offset backward with the decreasing inlet pressures.


2003 ◽  
Vol 30 (4) ◽  
pp. 704-710 ◽  
Author(s):  
Konstantin Savadjiev ◽  
Masoud Farzaneh

There is evidence that extreme ice loads combined with moderately high winds may cause catastrophic damage to overhead power lines and prolonged periods of electrical power outage. In this paper, a probabilistic model for combined wind and ice loads was developed for establishing realistic and conservative criteria for design and normalization. The proposed model combines icing of extreme thickness with a moderate wind speed, Vice, reduced by a reduction factor, kr, with respect to the extreme wind speed, Vmax. The evaluation of kr, which is the main purpose of this paper, is done by means of statistical analysis of samples taken from the same initial distribution of hourly wind speeds, Vh. The size of samples corresponds to the average annual icing persistency period, Tipp, observed in the climatic conditions of Quebec. This period, which was established in an earlier study by the authors using statistical analysis of data from the Hydro-Québec passive ice meter (PIM) network, is evaluated to be on average 144 h/year. It was found that kr ranges from 0.4 to 0.7, mainly as a function of the coefficient of variation (COV) of the initial distribution of wind speeds and the return period prescribed for extreme climatic loads.Key words: combined wind and ice loads, probabilistic model, overhead transmission lines.


Sign in / Sign up

Export Citation Format

Share Document