scholarly journals Variable-Load Heat Pumps: Impact of the Design and Control Parameters on the Actual Operation Conditions

2021 ◽  
Vol 65 (2-4) ◽  
pp. 371-377
Author(s):  
Alice Mugnini ◽  
Gianluca Coccia ◽  
Fabio Polonara ◽  
Alessia Arteconi

Nowadays heat pumps (HPs) represent the main alternative to traditional heating systems for the transition to nearly zero-energy buildings. Though HPs are a well-known technology, the estimation of their actual energy performance is still under discussion. Indeed, the proper choice of the HP design parameters (e.g. size, rated supply temperature) and the adopted control strategy can assume a paramount role to cover the mismatch between declared and actual performance of the system. Objective of this work is to analyze this mutual dependence in an operating system to provide guidelines for the design of a residential heating system with a HP. Through a dynamic energy simulation tool, a variable-load air-to-water HP is used to cover the thermal demand of a residential building. The effect of the reciprocal influence of different design choices (e.g. rated heating capacity or design supply temperature) and control strategies (e.g. climatic regulation) is analyzed by simulating different scenarios. To complete the evaluation, the impact of a thermal energy storage is also assessed. The study allows to identify guidelines for the design of different system configurations and results seem to confirm the impact of the investigated parameters on the seasonal performance of the system.

2019 ◽  
Vol 4 (11) ◽  
pp. 81
Author(s):  
Lobna Elgheriani ◽  
Brian Cody

Nowadays, high-rise buildings are developing very fast to cater to the increase in demand in major urban cities. This phenomenon has contributed to several environmental problems in both construction and operation. High-rise buildings design parameters seem to lack contextual environmental consideration. Evaluating the impact of such design parameters is a practical approach to enhance the overall energy and thermal performance. Existing research gaps are distinguished based on this review. Future research directions are also proposed through a methodological scheme to investigate comparatively, the effects of different geometric factors on both thermal and energy performance, specifically in the high-rise residential buildings with consideration to different climatic regions. Keywords: Energy Performance; Thermal Performance; High-rise Buildings; High-rise Residential BuildingseISSN: 2398-4287 © 2019. The Authors. Published for AMER ABRA cE-Bs by e-International Publishing House, Ltd., UK. This is an open access article under the CC BYNC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer–review under responsibility of AMER (Association of Malaysian Environment-Behaviour Researchers), ABRA (Association of Behavioural Researchers on Asians) and cE-Bs (Centre for Environment-Behaviour Studies), Faculty of Architecture, Planning & Surveying, Universiti Teknologi MARA, Malaysia.DOI: https://doi.org/10.21834/e-bpj.v4i11.1717


Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 237 ◽  
Author(s):  
S. Soutullo ◽  
E. Giancola ◽  
M. J. Jiménez ◽  
J. A. Ferrer ◽  
M. N. Sánchez

Based on the European energy directives, the building sector has to provide comfortable levels for occupants with minimum energy consumption as well as to reduce greenhouse gas emissions. This paper aims to compare the impact of climate change on the energy performance of residential buildings in order to derive potential design strategies. Different climate file inputs of Madrid have been used to quantify comparatively the thermal needs of two reference residential buildings located in this city. One of them represents buildings older than 40 years built according to the applicable Spanish regulations prior to 1979. The other refers to buildings erected in the last decade under more energy-restrictive constructive regulations. Three different climate databases of Madrid have been used to assess the impact of the evolution of the climate in recent years on the thermal demands of these two reference buildings. Two of them are typical meteorological years (TMY) derived from weather data measured before 2000. On the contrary, the third one is an experimental file representing the average values of the meteorological variables registered in Madrid during the last decade. Annual and monthly comparisons are done between the three climate databases assessing the climate changes. Compared to the TMYs databases, the experimental one records an average air temperature of 1.8 °C higher and an average value of relative humidity that is 9% lower.


2011 ◽  
Vol 3 (3) ◽  
pp. 35-48 ◽  
Author(s):  
Gregory J. Davis

Malaria is a vector-borne illness affecting millions of lives annually and imposes a heavy financial burden felt worldwide. Moreover, there is growing concern that global climate change, in particular, rising temperature, will increase this burden. As such, policy makers are in need of tools capable of informing them about the potential strengths and weaknesses of intervention and control strategies. A previously developed agent-based model of the Anopheles gambiae mosquito is extended, one of the primary vectors of malaria, to investigate how changes in temperature influence the dynamics of malaria transmission and the effectiveness of a common malaria intervention: insecticide-treated nets (ITNs). Results from the simulations suggest two important findings. Consistent with previous studies, an increase in mosquito abundance as temperature increases is observed. However, the increase in mosquito abundance reduces the effectiveness of ITNs at a given coverage level. The implications and limitations of these findings are discussed.


2020 ◽  
Author(s):  
Simon P. Kigozi ◽  
Ruth N. Kigozi ◽  
Adrienne Epstein ◽  
Arthur Mpimbaza ◽  
Asadu Sserwanga ◽  
...  

Abstract Background: Malaria control using long-lasting insecticidal nets (LLINs) and indoor residual spraying of insecticide (IRS) has been associated with reduced transmission throughout Africa. However, the impact of transmission reduction on the age distribution of malaria cases remains unclear. Methods: Over a 10-year period (January, 2009 to July, 2018), outpatient surveillance data from four health facilities in Uganda were used to estimate the impact of control interventions on temporal changes in the age distribution of malaria cases using multinomial regression. Interventions included mass distribution of LLINs at all sites and IRS at two sites. Results: Overall, 896,550 patient visits were included in the study; 211,632 aged <5 years, 171,166 aged 5-15 years, and 513,752 >15 years. Over time, the age distribution of patients not suspected of malaria and those malaria negative either declined or remained the same across all sites. In contrast, the age distribution of suspected and confirmed malaria cases increased across all four sites. In the two LLINs-only sites, the proportion of malaria cases in <5 years decreased from 31% to 16% and 35% to 25%, respectively. In the two sites receiving LLINs plus IRS, these proportions decreased from 58% to 30% and 64% to 47%, respectively. Similarly, in the LLINs-only sites, the proportion of malaria cases >15 years increased from 40% to 61% and 29% to 39%, respectively. In the sites receiving LLINs plus IRS, these proportions increased from 19% to 44% and 18% to 31%, respectively. Discussion: These findings demonstrate a shift in the burden of malaria from younger to older individuals following implementation of successful control interventions, which has important implications for malaria prevention, surveillance, case management and control strategies.


2021 ◽  
Vol 15 (5) ◽  
pp. e0009449
Author(s):  
Maylis Layan ◽  
Simon Dellicour ◽  
Guy Baele ◽  
Simon Cauchemez ◽  
Hervé Bourhy

Background Rabies is a fatal yet vaccine-preventable disease. In the last two decades, domestic dog populations have been shown to constitute the predominant reservoir of rabies in developing countries, causing 99% of human rabies cases. Despite substantial control efforts, dog rabies is still widely endemic and is spreading across previously rabies-free areas. Developing a detailed understanding of dog rabies dynamics and the impact of vaccination is essential to optimize existing control strategies and developing new ones. In this scoping review, we aimed at disentangling the respective contributions of mathematical models and phylodynamic approaches to advancing the understanding of rabies dynamics and control in domestic dog populations. We also addressed the methodological limitations of both approaches and the remaining issues related to studying rabies spread and how this could be applied to rabies control. Methodology/principal findings We reviewed how mathematical modelling of disease dynamics and phylodynamics have been developed and used to characterize dog rabies dynamics and control. Through a detailed search of the PubMed, Web of Science, and Scopus databases, we identified a total of n = 59 relevant studies using mathematical models (n = 30), phylodynamic inference (n = 22) and interdisciplinary approaches (n = 7). We found that despite often relying on scarce rabies epidemiological data, mathematical models investigated multiple aspects of rabies dynamics and control. These models confirmed the overwhelming efficacy of massive dog vaccination campaigns in all settings and unraveled the role of dog population structure and frequent introductions in dog rabies maintenance. Phylodynamic approaches successfully disentangled the evolutionary and environmental determinants of rabies dispersal and consistently reported support for the role of reintroduction events and human-mediated transportation over long distances in the maintenance of rabies in endemic areas. Potential biases in data collection still need to be properly accounted for in most of these analyses. Finally, interdisciplinary studies were determined to provide the most comprehensive assessments through hypothesis generation and testing. They also represent new avenues, especially concerning the reconstruction of local transmission chains or clusters through data integration. Conclusions/significance Despite advances in rabies knowledge, substantial uncertainty remains regarding the mechanisms of local spread, the role of wildlife in dog rabies maintenance, and the impact of community behavior on the efficacy of control strategies including vaccination of dogs. Future integrative approaches that use phylodynamic analyses and mechanistic models within a single framework could take full advantage of not only viral sequences but also additional epidemiological information as well as dog ecology data to refine our understanding of rabies spread and control. This would represent a significant improvement on past studies and a promising opportunity for canine rabies research in the frame of the One Health concept that aims to achieve better public health outcomes through cross-sector collaboration.


2019 ◽  
Author(s):  
Simon P. Kigozi ◽  
Ruth N. Kigozi ◽  
Adrienne Epstein ◽  
Arthur Mpimbaza ◽  
Asadu Sserwanga ◽  
...  

Abstract Background: Malaria control using long-lasting insecticidal nets (LLINs) and indoor residual spraying of insecticide (IRS) has been associated with reduced transmission throughout Africa. However, the impact of transmission reduction on the age distribution of malaria cases remains unclear. Methods: Over a 10-year period (January, 2009 to July, 2018), outpatient surveillance data from four health facilities in Uganda were used to estimate the impact of control interventions on temporal changes in the age distribution of malaria cases using multinomial regression. Interventions included mass distribution of LLINs at all sites and IRS at two sites. Results: Overall, 896,550 patient visits were included in the study; 211,632 aged <5 years, 171,166 aged 5-15 years, and 513,752 >15 years. Over time, the age distribution of patients not suspected of malaria and those malaria negative either declined or remained the same across all sites. In contrast, the age distribution of suspected and confirmed malaria cases increased across all four sites for. In the two LLINs-only sites, the proportion of malaria cases in <5 years decreased from 31% to 16% and 35% to 25%, respectively. In the two sites receiving LLINs plus IRS, these proportions decreased from 58% to 30% and 64% to 47%, respectively. Similarly, in the LLINs-only sites, the proportion of malaria cases >15 years of age increased from 40% to 61% and 29% to 39%, respectively. In the sites receiving LLINs plus IRS, these proportions increased from 19% to 44% and 18% to 31%, respectively. Discussion: These findings demonstrate a shift in the burden of malaria from younger to older individuals following implementation of successful control interventions, which has important implications for malaria prevention, surveillance, case management and control strategies.


2019 ◽  
Vol 188 (6) ◽  
pp. 987-990
Author(s):  
Nicole E Basta ◽  
M Elizabeth Halloran

Abstract The regression discontinuity design (RDD), first proposed in the educational psychology literature and popularized in econometrics in the 1960s, has only recently been applied to epidemiologic research. A critical aim of infectious disease epidemiologists and global health researchers is to evaluate disease prevention and control strategies, including the impact of vaccines and vaccination programs. RDDs have very rarely been used in this context. This quasi-experimental approach using observational data is designed to quantify the effect of an intervention when eligibility for the intervention is based on a defined cutoff such as age or grade in school, making it ideally suited to estimating vaccine effects given that many vaccination programs and mass-vaccination campaigns define eligibility in this way. Here, we describe key features of RDDs in general, then specific scenarios, with examples, to illustrate that RDDs are an important tool for advancing our understanding of vaccine effects. We argue that epidemiologic researchers should consider RDDs when evaluating interventions designed to prevent and control diseases. This approach can address a wide range of research questions, especially those for which randomized clinical trials would present major challenges or be infeasible. Finally, we propose specific ways in which RDDs could advance future vaccine research.


2015 ◽  
Vol 71 (10) ◽  
pp. 1524-1535 ◽  
Author(s):  
E. Torfs ◽  
T. Maere ◽  
R. Bürger ◽  
S. Diehl ◽  
I. Nopens

An improved one-dimensional (1-D) model for the secondary clarifier, i.e. the Bürger-Diehl model, was recently presented. The decisive difference to traditional layer models is that every detail of the implementation is in accordance with the theory of partial differential equations. The Bürger-Diehl model allows accounting for hindered and compressive settling as well as inlet dispersion. In this contribution, the impact of specific features of the Bürger-Diehl model on settler underflow concentration predictions, plant sludge inventory and mixed liquor suspended solids based control actions are investigated by using the benchmark simulation model no. 1. The numerical results show that the Bürger-Diehl model allows for more realistic predictions of the underflow sludge concentration, which is essential for more accurate wet weather modelling and sludge waste predictions. The choice of secondary settler model clearly has a profound impact on the operation and control of the entire treatment plant and it is recommended to use the Bürger-Diehl model as of now in any wastewater treatment plant modelling effort.


Sign in / Sign up

Export Citation Format

Share Document