scholarly journals Classification of Drones Using Edge-Enhanced Micro-Doppler Image Based on CNN

2021 ◽  
Vol 38 (4) ◽  
pp. 1033-1039
Author(s):  
Ashish Kumar Singh ◽  
Yong-Hoon Kim

The development of advanced radar system for detection and classification of UAVs is an essential requirement for today’s societal security. Such intelligent system could able to analyze the received radar signal and extract relevant information by utilizing sophisticated algorithm. In this letter, the utilization of micro-Doppler signature (MDS) for classification of drones, using convolutional neural network (CNN) model has been presented. We have generated images of micro-Doppler signatures using W-band radar system and used it for classification purpose. In this work, phase stretch transform (PST) has been utilized for edge detection and enhancement of the micro-Doppler images, to generate the edge-enhanced micro-Doppler image (EMDI). The comparison based on classification performance of CNN with different input datasets shows that the EMDI based CNN model outperformed the micro-Doppler image (MDI) based model.

2021 ◽  
Vol 1 ◽  
Author(s):  
Dilan Dhulashia ◽  
Nial Peters ◽  
Colin Horne ◽  
Piers Beasley ◽  
Matthew Ritchie

The use of drones for recreational, commercial and military purposes has seen a rapid increase in recent years. The ability of counter-drone detection systems to sense whether a drone is carrying a payload is of strategic importance as this can help determine the potential threat level posed by a detected drone. This paper presents the use of micro-Doppler signatures collected using radar systems operating at three different frequency bands for the classification of carried payload of two different micro-drones performing two different motions. Use of a KNN classifier with six features extracted from micro-Doppler signatures enabled mean payload classification accuracies of 80.95, 72.50 and 86.05%, for data collected at S-band, C-band and W-band, respectively, when the drone type and motion type are unknown. The impact on classification performance of different amounts of situational information is also evaluated in this paper.


Author(s):  
Yuejun Liu ◽  
Yifei Xu ◽  
Xiangzheng Meng ◽  
Xuguang Wang ◽  
Tianxu Bai

Background: Medical imaging plays an important role in the diagnosis of thyroid diseases. In the field of machine learning, multiple dimensional deep learning algorithms are widely used in image classification and recognition, and have achieved great success. Objective: The method based on multiple dimensional deep learning is employed for the auxiliary diagnosis of thyroid diseases based on SPECT images. The performances of different deep learning models are evaluated and compared. Methods: Thyroid SPECT images are collected with three types, they are hyperthyroidism, normal and hypothyroidism. In the pre-processing, the region of interest of thyroid is segmented and the amount of data sample is expanded. Four CNN models, including CNN, Inception, VGG16 and RNN, are used to evaluate deep learning methods. Results: Deep learning based methods have good classification performance, the accuracy is 92.9%-96.2%, AUC is 97.8%-99.6%. VGG16 model has the best performance, the accuracy is 96.2% and AUC is 99.6%. Especially, the VGG16 model with a changing learning rate works best. Conclusion: The standard CNN, Inception, VGG16, and RNN four deep learning models are efficient for the classification of thyroid diseases with SPECT images. The accuracy of the assisted diagnostic method based on deep learning is higher than that of other methods reported in the literature.


2021 ◽  
Vol 21 (S2) ◽  
Author(s):  
Kun Zeng ◽  
Yibin Xu ◽  
Ge Lin ◽  
Likeng Liang ◽  
Tianyong Hao

Abstract Background Eligibility criteria are the primary strategy for screening the target participants of a clinical trial. Automated classification of clinical trial eligibility criteria text by using machine learning methods improves recruitment efficiency to reduce the cost of clinical research. However, existing methods suffer from poor classification performance due to the complexity and imbalance of eligibility criteria text data. Methods An ensemble learning-based model with metric learning is proposed for eligibility criteria classification. The model integrates a set of pre-trained models including Bidirectional Encoder Representations from Transformers (BERT), A Robustly Optimized BERT Pretraining Approach (RoBERTa), XLNet, Pre-training Text Encoders as Discriminators Rather Than Generators (ELECTRA), and Enhanced Representation through Knowledge Integration (ERNIE). Focal Loss is used as a loss function to address the data imbalance problem. Metric learning is employed to train the embedding of each base model for feature distinguish. Soft Voting is applied to achieve final classification of the ensemble model. The dataset is from the standard evaluation task 3 of 5th China Health Information Processing Conference containing 38,341 eligibility criteria text in 44 categories. Results Our ensemble method had an accuracy of 0.8497, a precision of 0.8229, and a recall of 0.8216 on the dataset. The macro F1-score was 0.8169, outperforming state-of-the-art baseline methods by 0.84% improvement on average. In addition, the performance improvement had a p-value of 2.152e-07 with a standard t-test, indicating that our model achieved a significant improvement. Conclusions A model for classifying eligibility criteria text of clinical trials based on multi-model ensemble learning and metric learning was proposed. The experiments demonstrated that the classification performance was improved by our ensemble model significantly. In addition, metric learning was able to improve word embedding representation and the focal loss reduced the impact of data imbalance to model performance.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Yizhe Wang ◽  
Cunqian Feng ◽  
Yongshun Zhang ◽  
Sisan He

Precession is a common micromotion form of space targets, introducing additional micro-Doppler (m-D) modulation into the radar echo. Effective classification of space targets is of great significance for further micromotion parameter extraction and identification. Feature extraction is a key step during the classification process, largely influencing the final classification performance. This paper presents two methods for classifying different types of space precession targets from the HRRPs. We first establish the precession model of space targets and analyze the scattering characteristics and then compute electromagnetic data of the cone target, cone-cylinder target, and cone-cylinder-flare target. Experimental results demonstrate that the support vector machine (SVM) using histograms of oriented gradient (HOG) features achieves a good result, whereas the deep convolutional neural network (DCNN) obtains a higher classification accuracy. DCNN combines the feature extractor and the classifier itself to automatically mine the high-level signatures of HRRPs through a training process. Besides, the efficiency of the two classification processes are compared using the same dataset.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Minjie Deng ◽  
Yabing Cao ◽  
Zhenli Zhao ◽  
Lu Yang ◽  
Yanfang Zhang ◽  
...  

Understanding the role of miRNAs in regulating the molecular mechanisms responsive to drought stress was studied in Paulownia “yuza 1.” Two small RNA libraries and two degradome libraries were, respectively, constructed and sequenced in order to detect miRNAs and their target genes associated with drought stress. A total of 107 miRNAs and 42 putative target genes were identified in this study. Among them, 77 miRNAs were differentially expressed between drought-treated Paulownia “yuza 1” and the control (60 downregulated and 17 upregulated). The predicted target genes were annotated using the GO, KEGG, and Nr databases. According to the functional classification of the target genes, Paulownia “yuza 1” may respond to drought stress via plant hormone signal transduction, photosynthesis, and osmotic adjustment. Furthermore, the expression levels of seven miRNAs (ptf-miR157b, ptf-miR159b, ptf-miR398a, ptf-miR9726a, ptf-M2153, ptf-M2218, and ptf-M24a) and their corresponding target genes were validated by quantitative real-time PCR. The results provide relevant information for understanding the molecular mechanism of Paulownia resistance to drought and reference data for researching drought resistance of other trees.


2018 ◽  
Vol 8 (9) ◽  
pp. 1569 ◽  
Author(s):  
Shengbing Wu ◽  
Hongkun Jiang ◽  
Haiwei Shen ◽  
Ziyi Yang

In recent years, gene selection for cancer classification based on the expression of a small number of gene biomarkers has been the subject of much research in genetics and molecular biology. The successful identification of gene biomarkers will help in the classification of different types of cancer and improve the prediction accuracy. Recently, regularized logistic regression using the L 1 regularization has been successfully applied in high-dimensional cancer classification to tackle both the estimation of gene coefficients and the simultaneous performance of gene selection. However, the L 1 has a biased gene selection and dose not have the oracle property. To address these problems, we investigate L 1 / 2 regularized logistic regression for gene selection in cancer classification. Experimental results on three DNA microarray datasets demonstrate that our proposed method outperforms other commonly used sparse methods ( L 1 and L E N ) in terms of classification performance.


Sensors ◽  
2019 ◽  
Vol 19 (18) ◽  
pp. 4033 ◽  
Author(s):  
Yoo ◽  
Wang ◽  
Seol ◽  
Lee ◽  
Chung ◽  
...  

Recognizing and tracking the targets located behind walls through impulse radio ultra-wideband (IR-UWB) radar provides a significant advantage, as the characteristics of the IR-UWB radar signal enable it to penetrate obstacles. In this study, we design a through-wall radar system to estimate and track multiple targets behind a wall. The radar signal received through the wall experiences distortion, such as attenuation and delay, and the characteristics of the wall are estimated to compensate the distance error. In addition, unlike general cases, it is difficult to maintain a high detection rate and low false alarm rate in this through-wall radar application due to the attenuation and distortion caused by the wall. In particular, the generally used delay-and-sum algorithm is significantly affected by the motion of targets and distortion caused by the wall, rendering it difficult to obtain a good performance. Thus, we propose a novel method, which calculates the likelihood that a target exists in a certain location through a detection process. Unlike the delay-and-sum algorithm, this method does not use the radar signal directly. Simulations and experiments are conducted in different cases to show the validity of our through-wall radar system. The results obtained by using the proposed algorithm as well as delay-and-sum and trilateration are compared in terms of the detection rate, false alarm rate, and positioning error.


2019 ◽  
Vol 14 (1) ◽  
pp. 124-134 ◽  
Author(s):  
Shuai Zhang ◽  
Yong Chen ◽  
Xiaoling Huang ◽  
Yishuai Cai

Online feedback is an effective way of communication between government departments and citizens. However, the daily high number of public feedbacks has increased the burden on government administrators. The deep learning method is good at automatically analyzing and extracting deep features of data, and then improving the accuracy of classification prediction. In this study, we aim to use the text classification model to achieve the automatic classification of public feedbacks to reduce the work pressure of administrator. In particular, a convolutional neural network model combined with word embedding and optimized by differential evolution algorithm is adopted. At the same time, we compared it with seven common text classification models, and the results show that the model we explored has good classification performance under different evaluation metrics, including accuracy, precision, recall, and F1-score.


2008 ◽  
Vol 18 (1) ◽  
pp. 123-138 ◽  
Author(s):  
Milos Radovanovic ◽  
Mirjana Ivanovic

Motivated by applying Text Categorization to classification of Web search results, this paper describes an extensive experimental study of the impact of bag-of- words document representations on the performance of five major classifiers - Na?ve Bayes, SVM, Voted Perceptron, kNN and C4.5. The texts, representing short Web-page descriptions sorted into a large hierarchy of topics, are taken from the dmoz Open Directory Web-page ontology, and classifiers are trained to automatically determine the topics which may be relevant to a previously unseen Web-page. Different transformations of input data: stemming, normalization, logtf and idf, together with dimensionality reduction, are found to have a statistically significant improving or degrading effect on classification performance measured by classical metrics - accuracy, precision, recall, F1 and F2. The emphasis of the study is not on determining the best document representation which corresponds to each classifier, but rather on describing the effects of every individual transformation on classification, together with their mutual relationships. .


Sign in / Sign up

Export Citation Format

Share Document