scholarly journals A review on underground mine ventilation system

2021 ◽  
Vol 69 (2) ◽  
pp. 62
Author(s):  
Omer Haitham Kanam ◽  
Maher Obaid Ahmed

In the field of mines, there are dozens of methods concerned with the optimization of ventilation system in underground mines and how bad ventilation system is playing a major effect on miners and mine’s activities. The ventilation system is considered very important because it consumed high energy of mines of total power consumption. This paper is a review of previous studies, which have been done before on design of ventilation system and its optimization methods like, using of software tools to simulate the numerical equations based on the pressure, temperature, flow rate, and other effected parameters, which are recorded by various ways of surveying. It has observed that Ventsim software is widely used because of its flexibility in dynamic simulation based on various parameters included deep, fan position and flow rate.

2019 ◽  
Vol 111 ◽  
pp. 05010
Author(s):  
Shohei Miyata ◽  
Yasunori Akashi ◽  
Jongyeon Lim ◽  
Yasuhiro Kuwahara

Detecting and diagnosing faults that degrade the performance of heating, ventilation, and air conditioning (HVAC) systems is very important for maintaining high energy efficiency. The performance of HVAC systems can be evaluated by analyzing monitored data. However, data from a HVAC system generally includes uncertainties, which renders monitored data less reliable. Then, we focused on uncertainties and a calculated performance distribution. The uncertainties from sensors, actuators, and communications were modelled stochastically and were incorporated into a detailed simulation. The system coefficient of performance (SCOP) was used as a performance indicator, which is defined as the ratio of suppled heat to total power consumption. The SCOP distributions over the course of representative weeks in 2007 and 2015 were calculated by repeating the simulation 2,000 times with different uncertainties. Regarding the results for 2015, the 90% confidence interval of the distribution was -4.9% to 5.8% from the SCOP value without uncertainties. The SCOP value determined from the monitored data in 2015 was outside of the low end of the distribution though that in 2007 was inside of the interval. Through an analysis of the monitored data, it was found that fault detection is possible by comparing the monitored data with the distribution.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xiao Wu ◽  
Zhaoting Wang ◽  
Xiaodong Dai ◽  
Quan Ge ◽  
Fei Liu

Small-scale natural gas liquefaction processes have several clear advantages, particularly in the exploitation of ‘unconventional’ natural gas (NG) from sources such as difficult-to-access and offshore gas fields. Moreover, conventional liquefaction processes have a number of disadvantages such as high energy consumption, large cooling loads required in the refrigeration cycle, and non-uniform matching of cold and hot flows in liquified natural gas (LNG) heat exchanger (HE). The main objective of this study was to optimize the most commonly used mixed refrigerant process. The liquefaction performance of the optimized process was analyzed and the influence of gas parameters on the power consumption, exergy loss, freezing mixture circulation, and cooling water load were investigated. The results show that compressor power consumption can be reduced by 29.8%, the cooling water load can be reduced by 21.3%, and the system exergy efficiency can be increased by 41% with the optimized process. Furthermore, throttling and compression of the freezing mixture were increased during the refrigeration stage. It can be concluded that reducing the feed gas temperature and increasing the feed gas pressure can reduce the total power consumption, exergy loss, freezing mixture circulation, and cooling water load, which can significantly improve liquefaction performance.


2010 ◽  
Vol 63 (3) ◽  
pp. 529-538
Author(s):  
Aleksandar Ganic ◽  
Ivica Ristovic ◽  
Dragan Djordjevic ◽  
Milivoj Vulic

In total costs of ore mining, haulage participates with 30-60%; the total number of workers engaged in the transportation exceeds 35%, while the participation of transportation in the total power consumption amounts to over 40%. All these values indicate that transportation is one of the most signifi cant challenges in the underground mining of ore deposits and that haulage analysis is very important both in selecting the haulage type and its design, utilization and maintenance. In addition to various technical mining parameters, together with mining and geological conditions, haulage effi ciency depends on the selection of optimal haulage drives, which can be achieved by accurately connecting the underground mine workings with mine network points on the surface of a site. The selection of the best mine haulage routes is one the most critical tasks in mine surveying. This paper shows how to adjust a junction triangle on a working level using the parametric adjustment method.


2021 ◽  
Vol 4 (3) ◽  
pp. 42
Author(s):  
Mario Di Nardo ◽  
Haoxuan Yu

With the continuous development and progress of the mining industry, various technologies in mining engineering have gradually developed towards the intelligent stage, and the ventilation system is no exception. Since ancient times, mine ventilation has been a necessary part of mining engineering, and so the optimization of mine ventilation undoubtedly plays a great role in mining production. This two-part opinion paper briefly introduces the development of the intelligent ventilation in mining engineering and serves as a guide to the Tossing out a brick to get a jade gem, with implications for both the development and the future of the underground mine ventilation systems. Finally, in the second part of the paper, we explain why we think ZigBee WSN technology is the best choice in intelligent ventilation systems in underground mines at the present stage.


2018 ◽  
Vol 9 (1) ◽  
pp. 74 ◽  
Author(s):  
Xi Liu ◽  
Yueling Li ◽  
Kunyu Zhuang ◽  
Ruansong Fu ◽  
Shi Lin ◽  
...  

In this study, the performance of ice slurry production by scraped-surface method was experimentally investigated. Temperature change characteristics, ice packing fraction (IPF) of ice slurry, power consumption of scraping system and coefficient of performance (COP) were measured by varying the concentration of sodium chloride solution, scraping speed, and solution flow rate. The effect of nanosilica on efficiency of ice slurry production was also studied. The results showed that scraping power consumption accounted for only a small proportion (about 5%) of the total power consumption of the system. An increase in the concentration of sodium chloride caused a decrease in the IPF and a decrease in the COP of the system. With the solution flow rate at 1.3 m3/h and scraping speed at 13 rpm, the maximum COP (2.43) was obtained. Furthermore, the addition of nanosilica had a significant effect on improving the system COP.


Author(s):  
N.D. Iliinov ◽  
A.M. Mazhitov ◽  
A.B. Allaberdin ◽  
K.V. Vazhdaev

Currently, many underground mines are revising their design solutions to increase their production capacity. This tendency is explained by the decreasing ore grades, as well as by the extensive introduction of mechanization in underground mining operations that has improved the output of mobile equipment by increasing the box capacity and engine power. Dieselpowered mobile vehicles are the most common in underground mining practice. The advantages of such engines are obvious as they generate more power than other types of engines. However, the high air demand for mine ventilation limits their application. This is associated with the need to increase the cross-sections of permanent mine workings in order to comply with the standard air flow rate with account of the increased ventilation capacity along with an increase in the inventory of mobile equipment in order to ensure the specified output of the mine. The specific features of mining operations are defined by the stage-wise character of commissioning various blocks of the deposit. Managing of production and development works provides an opportunity to ventilate the mine sections due to their consecutive commissioning, locally, with an isolated stream of air by means of mine workings that do not have the intersection of air streams. This provides a reduction of critical path of air travel up to 30% and reduction of the general mine ventilating pressure drop by at least 20% at constant air flow rate. The results of the work can be used in designing the ventilation system of underground mines both under construction and in operation.


2021 ◽  
Vol 11 (15) ◽  
pp. 6749
Author(s):  
Zhifeng Xie ◽  
Ao Wang ◽  
Zhuoran Liu

The cooling system is an important subsystem of an internal combustion engine, which plays a vital role in the engine’s dynamical characteristic, the fuel economy, and emission output performance at each speed and load. This paper proposes an economical and precise model for an electric cooling system, including the modeling of engine heat rejection, water jacket temperature, and other parts of the cooling system. This model ensures that the engine operates precisely at the designated temperature and the total power consumption of the cooling system takes the minimum value at some power proportion of fan and pump. Speed maps for the cooling fan and pump at different speeds and loads of engine are predicted, which can be stored in the electronic control unit (ECU). This model was validated on a single-cylinder diesel engine, called the DK32. Furthermore, it was used to tune the temperature of the water jacket precisely. The results show that in the common use case, the electric cooling system can save the power of 255 W in contrast with the mechanical cooling system, which is about 1.9% of the engine’s power output. In addition, the validation results of the DK32 engine meet the non-road mobile machinery China-IV emission standards.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3713
Author(s):  
Soyeon Lee ◽  
Bohyeok Jeong ◽  
Keunyeol Park ◽  
Minkyu Song ◽  
Soo Youn Kim

This paper presents a CMOS image sensor (CIS) with built-in lane detection computing circuits for automotive applications. We propose on-CIS processing with an edge detection mask used in the readout circuit of the conventional CIS structure for high-speed lane detection. Furthermore, the edge detection mask can detect the edges of slanting lanes to improve accuracy. A prototype of the proposed CIS was fabricated using a 110 nm CIS process. It has an image resolution of 160 (H) × 120 (V) and a frame rate of 113, and it occupies an area of 5900 μm × 5240 μm. A comparison of its lane detection accuracy with that of existing edge detection algorithms shows that it achieves an acceptable accuracy. Moreover, the total power consumption of the proposed CIS is 9.7 mW at pixel, analog, and digital supply voltages of 3.3, 3.3, and 1.5 V, respectively.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3129
Author(s):  
Jewon Oh ◽  
Daisuke Sumiyoshi ◽  
Masatoshi Nishioka ◽  
Hyunbae Kim

The mass introduction of renewable energy is essential to reduce carbon dioxide emissions. We examined an operation method that combines the surplus energy of photovoltaic power generation using demand response (DR), which recognizes the balance between power supply and demand, with an aquifer heat storage system. In the case that predicts the occurrence of DR and performs DR storage and heat dissipation operation, the result was an operation that can suppress daytime power consumption without increasing total power consumption. Case 1-2, which performs nighttime heat storage operation for about 6 h, has become an operation that suppresses daytime power consumption by more than 60%. Furthermore, the increase in total power consumption was suppressed by combining DR heat storage operation. The long night heat storage operation did not use up the heat storage amount. Therefore, it is recommended to the heat storage operation at night as much as possible before DR occurs. In the target area of this study, the underground temperature was 19.1 °C, the room temperature during cooling was about 25 °C and groundwater could be used as the heat source. The aquifer thermal energy storage (ATES) system in this study uses three wells, and consists of a well that pumps groundwater, a heat storage well that stores heat and a well that used heat and then returns it. Care must be taken using such an operation method depending on the layer configuration.


Sign in / Sign up

Export Citation Format

Share Document