scholarly journals A novel matrix for hydrophobic interaction chromatography and its application in lysozyme adsorption.

2014 ◽  
Vol 61 (4) ◽  
Author(s):  
Mehmet Gedikli ◽  
Şeyda Ceylan ◽  
Mahmut Erzengin ◽  
Mehmet Odabaşı

A novel 1-naphthylamine (NA) coupled poly(2-hydroxyethyl methacrylate-co-N-methacryloyl-(L)-histidine methyl ester) [NA-PHEMAH] supermacroporous monolithic hydrophobic cryogel was prepared via covalent coupling of NA to PHEMAH for adsorption of lysozyme from aqueous solution. Firstly, PHEMAH monolithic cryogel was prepared by radical cryocopolymerization of HEMA with MAH as a functional comonomer and N,N'-methylene-bisacrylamide (MBAAm) as a crosslinker directly in a plastic syringe, and then NA molecules were covalently attached to the imidazole rings of MAH groups of the polymeric structure. The prepared, NA-PHEMAH, supermacroporous monolithic hydrophobic cryogel was characterized by scanning electron microscopy (SEM). The effects of initial lysozyme concentration, pH, salt type, temperature and flow rate on the adsorption efficiency of monolithic hydrophobic cryogel were studied in a column system. The maximum amount of lysozyme adsorption from aqueous solution in phosphate buffer was 86.1 mg/g polymer at pH 8.0 with a flow rate of 1 mL/min. It was observed that lysozyme could be repeatedly adsorbed and desorbed with the NA-PHEMAH monolithic hydrophobic cryogel without significant loss of the adsorption capacity.

2020 ◽  
Vol 71 (1) ◽  
pp. 1-12
Author(s):  
Salman H. Abbas ◽  
Younis M. Younis ◽  
Mohammed K. Hussain ◽  
Firas Hashim Kamar ◽  
Gheorghe Nechifor ◽  
...  

The biosorption performance of both batch and liquid-solid fluidized bed operations of dead fungal biomass type (Agaricusbisporus ) for removal of methylene blue from aqueous solution was investigated. In batch system, the adsorption capacity and removal efficiency of dead fungal biomass were evaluated. In fluidized bed system, the experiments were conducted to study the effects of important parameters such as particle size (701-1400�m), initial dye concentration(10-100 mg/L), bed depth (5-15 cm) and solution flow rate (5-20 ml/min) on breakthrough curves. In batch method, the experimental data was modeled using several models (Langmuir,Freundlich, Temkin and Dubinin-Radushkviechmodels) to study equilibrium isotherms, the experimental data followed Langmuir model and the results showed that the maximum adsorption capacity obtained was (28.90, 24.15, 21.23 mg/g) at mean particle size (0.786, 0.935, 1.280 mm) respectively. In Fluidized-bed method, the results show that the total ion uptake and the overall capacity will be decreased with increasing flow rate and increased with increasing initial concentrations, bed depth and decreasing particle size.


2009 ◽  
Vol 1 (7) ◽  
pp. 1525-1532 ◽  
Author(s):  
Jem-Kun Chen ◽  
Zong-Yan Chen ◽  
Han-Ching Lin ◽  
Po-Da Hong ◽  
Feng-Chih Chang

Author(s):  
Keiji Yasuda ◽  
Koji Hamada ◽  
Yoshiyuki Asakura

Abstract The enrichment characteristics of amino acids by ultrasonic atomization were investigated. Samples were aqueous solutions of L-phenylalanine and L-tyrosine. The ratio of amino acid concentration in the mist to that in the solution was defined as the enrichment factor. As the flow rate of carrier gas became higher, the collection mass of mist increased and the enrichment factor decreased. The enrichment factor depended on the solution pH. The enrichment factor increased with decreasing amino acid concentration in the solution and enhanced by the addition of ultrafine bubbles.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Fanhua Wu ◽  
Yuyu Zhang ◽  
Tao Li ◽  
Yongfeng Liu ◽  
Yi Liu ◽  
...  

Purpose The purpose of this study was to prepare carboxylated attapulgite (APT-COOH) and then be used as one of the ligands to prepare metal organic framework (MOF) hybrid materials to reduce the cost of MOF materials and improve the dispersed condition of APT. And then the materials were used to enrich anionic dye Congo red from aqueous solution. Design/methodology/approach The MOF hybrid materials were designed by means of facile reflux method rather than hydrothermal method, characterized by Thermogravimetric Analysis (TGA), Fourier Transform Infrared (FTIR) Spectrometer and pore structure. The dispersed degree of APT-COOH in the MOF materials was validated according to adsorption efficiency for Congo red. Findings Due to introduction of APT-COOH, the microenvironment of the MOF materials changed, leading to different adsorption behaviors. Compared to the MOF material without APT-COOH, the adsorption capacities of the hybridized MOF materials with different amounts of APT-COOH introduced increased by 4.58% and 15.55%, respectively, as the initial concentration of Congo red solution of 300 mg/L. Meantime, hybridized MOF materials were suitable to remove Congo red with low concentration, while the MOF material without APT-COOH was appropriate to enrich Congo red with high concentration. Research limitations/implications The microstructure of MOF hybrid materials in detail is the further and future investigation. Practical implications This study will provide a method to reduce the cost of MOF materials and a theoretical support to treat anionic dyes from aqueous solution. Originality/value APT-COOH was prepared and used as one of the ligands to synthesize MOF material to improve the dispersed degree of APT-COOH and reduce the cost of the MOF materials. The adsorption efficiency was greatly enhanced with low concentration of Congo red solution, and the results indicated that hydrogen bonding, electrostatic interaction, and p-p conjugation were involved in the adsorption process. The prepared MOFs materials exhibited excellent adsorption efficiency, which made the present materials highly promising and potentially useful in practical application as adsorbents to enrich anionic dyes such as Congo red from aqueous solution.


2018 ◽  
Vol 8 (11) ◽  
pp. 2221 ◽  
Author(s):  
Olga Długosz ◽  
Marcin Banach

Vermiculite has been used for the removal of Cu 2 + and Ag + from aqueous solutions in a fixed-bed column system. The effects of initial silver and copper ion concentrations, flow rate, and bed height of the adsorbent in a fixed-bed column system were investigated. Statistical analysis confirmed that breakthrough curves depended on all three factors. The highest inlet metal cation concentration (5000 mg/dm3), the lowest bed height (3 cm) and the lowest flow rate (2 and 3 cm3/min for Ag + and Cu 2 + , respectively) were optimal for the adsorption process. The maximum total percentage of metal ions removed was 60.4% and 68.7% for Ag+ and Cu2+, respectively. Adsorption data were fitted with four fixed-bed adsorption models, namely Clark, Bohart–Adams, Yoon–Nelson and Thomas models, to predict breakthrough curves and to determine the characteristic column parameters. The adsorbent was characterized by SEM, FTIR, EDS and BET techniques. The results showed that vermiculite could be applied as a cost-effective sorbent for the removal of Cu 2 + and Ag + from wastewater in a continuous process.


2015 ◽  
Vol 43 (3) ◽  
pp. 277-281 ◽  
Author(s):  
M Rahman ◽  
S Gul ◽  
M Ajmal ◽  
A Iqbal ◽  
Akk Achakzai

Removal of cadmium from aqueous solution was studied by using Quetta pine (Pinus halepensis Mill.) leaves. Batch adsorption experiments were performed as a function of appropriate equilibrium time, pH, concentration of adsorbate and amount of adsorbent. The optimum pH required for maximum adsorption was found to be 7.0 and the maximum contact time for the equilibrium was 30 minutes at adsorbent dose of 10 g. The maximum adsorption efficiency of cadmium removal was 98.50%. The results were better fitted by Langmuir than Freundlich isotherm. The separation factor of equilibrium 0.12 and 0.67 showed that Quetta pine leaves are good adsorbent of cadmium from aqueous solution DOI: http://dx.doi.org/10.3329/bjb.v43i3.21598 Bangladesh J. Bot. 43(3): 277-281, 2014 (December)


2012 ◽  
Vol 60 (2) ◽  
pp. 181-184 ◽  
Author(s):  
Mohammad Arifur Rahman ◽  
Tamanna Azam ◽  
A. M. Shafiqul Alam

Anthracite was used as an adsorbent to remove excess phosphate from wastewater. Anthracite used in the present study is environmentally friendly and of cost effective. The adsorption study was carried out using different particle size of adsorbents, different concentration of phosphate solution ranging from 25.0 mg/L to 100.0 mg/L, different pH values ranging from 0.5 to 11.5 along with different adsorbent amount from 1.0 g to 5.0 g. Flow rate was also varied in the range of 0.6 mL/min to 1.8 mL/min. Adsorption column methods show the optimum removal of phosphate under the following conditions: initial phosphate concentration 25 mg/L, initial volume 25.0 mL, flow rate 1.0 mL/min adsorbent amount 2.0 g, particle size, < 90?m. This removal method may provide a solution to the removal phosphate from wastewater in Bangladesh as well as other countries of the world.DOI: http://dx.doi.org/10.3329/dujs.v60i2.11490 Dhaka Univ. J. Sci. 60(2): 181-184, 2012 (July)


Sign in / Sign up

Export Citation Format

Share Document