scholarly journals Isolation and identification of the bacterium producing antitumor and antimicrobial compounds derived from Iranian swamp frog (Rana ridibunda) skin

Author(s):  
Sepideh Asadi ◽  
Neda Soleimani ◽  
Zahra Khosravi Babadi ◽  
Gholam Hossein Ebrahimipour

Background and Objectives: Cancer incidence and recurrence, antibiotic resistance, and overuse of antibiotics have become a global concern. The purpose of this study was to identify and isolate bacteria from the skin of the Rana ridibunda, Iranian swamp frog, which has produced antimicrobial compounds, and investigate its cytotoxic activity on the breast (MCF7) and glioblastoma (U87) cancer cell line. Materials and Methods: An antibiotic-producing bacterium was isolated from the frog skin. The bacterium was identified based on 16S rDNA sequencing and biochemical and morphological characteristics. Antimicrobial activity of the culture supernatant was examined by disc diffusion and MIC methods. Cytoplasmic and cell wall extracts of bacteria were prepared by sonication. SDS-PAGE was then used to examine protein contents of them. The cancer cell lines were treated with cytoplasmic and cell wall extracts at different concentrations. The effects of cytotoxicity were assessed by MTT assay at 24 and 48 h intervals. Finally, the results were analyzed by SPSS. Results: The isolated bacterium was identified as a new strain of Bacillus atrophaeus. MIC and disc diffusion methods showed that the Bacillus atrophaeus antimicrobial activity was broad spectrum. MTT assay showed IC50 values 30 μg/ml and 20 μg/ml for U87 and MCF7 cells after 24-48 h exposure, respectively. Conclusion: The cytoplasmic extracts of Bacillus atrophaeus has anticancer potential and can be used as an alternative or complementary candidate in the treatment of cancer. Further in vivo and in vitro mechanistic studies are suggested to confirm the biological activities.

2009 ◽  
Vol 1 (2) ◽  
Author(s):  
Risa Nofiani ◽  
Siti Nurbetty ◽  
Ajuk Sapar

<p>The increase of issues on the antibiotics resistant pathogenic bacteria has triggered high exploration for new antimicrobial compounds. One of the potential sources is sponge-associated bacteria. The aim of this study was to get sponge-associated bacteria extract containing antimicrobial activities. On the basis screening of antimicrobial activity using by streaking on agar medium, there were two potential isolates with antimicrobial activities namely LCS1 and LCS2. The two isolates were cultivated,then secondary metabolite product were extracted using methanol as a solvent. Minimum inhibitory concentrations (MICs) of extract LCS 1 were 1,000 μg/well for S. aureus, 950 μg/well for Salmonella sp.and 800 μg/well for Bacillus subtilis. Minimum inhibitory concentrations of extract LCS 2 were 500 μg/well for S. aureus, 1,050 μg/well for Salmonella sp., 750 μg/well for Bacillus subtilis, 350 μg/well for P. aeruginosa, 750 μg/sumur terhadap B. subtilis. Based on the MIC values, the two assay extracts have a relatively low antimicrobial activity.</p> <p>Keywords:Antimicrobial,Sponges associated bacteria,MICs</p>


2021 ◽  
Vol 9 (6) ◽  
pp. 1249
Author(s):  
Johannes Koehbach ◽  
Jurnorain Gani ◽  
Kai Hilpert ◽  
David J Craik

According to the World Health Organization (WHO) the development of resistance against antibiotics by microbes is one of the most pressing health concerns. The situation will intensify since only a few pharmacological companies are currently developing novel antimicrobial compounds. Discovery and development of novel antimicrobial compounds with new modes of action are urgently needed. Antimicrobial peptides (AMPs) are known to be able to kill multidrug-resistant bacteria and, therefore, of interest to be developed into antimicrobial drugs. Proteolytic stability and toxicities of these peptides are challenges to overcome, and one strategy frequently used to address stability is cyclization. Here we introduced a disulfide-bond to cyclize a potent and nontoxic 9mer peptide and, in addition, as a proof-of-concept study, grafted this peptide into loop 6 of the cyclotide MCoTI-II. This is the first time an antimicrobial peptide has been successfully grafted onto the cyclotide scaffold. The disulfide-cyclized and grafted cyclotide showed moderate activity in broth and strong activity in 1/5 broth against clinically relevant resistant pathogens. The linear peptide showed superior activity in both conditions. The half-life time in 100% human serum was determined, for the linear peptide, to be 13 min, for the simple disulfide-cyclized peptide, 9 min, and, for the grafted cyclotide 7 h 15 min. The addition of 10% human serum led to a loss of antimicrobial activity for the different organisms, ranging from 1 to >8-fold for the cyclotide. For the disulfide-cyclized version and the linear version, activity also dropped to different degrees, 2 to 18-fold, and 1 to 30-fold respectively. Despite the massive difference in stability, the linear peptide still showed superior antimicrobial activity. The cyclotide and the disulfide-cyclized version demonstrated a slower bactericidal effect than the linear version. All three peptides were stable at high and low pH, and had very low hemolytic and cytotoxic activity.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Mashooq Ahmad Bhat ◽  
Mohamed A. Al-Omar ◽  
Ahmed M. Naglah ◽  
Abdul Arif Khan

A series of pyrazoles derived from the substituted enaminones were synthesized and were evaluated for antimicrobial activity. All the compounds were characterized by the spectral data and elemental analysis. The synthesized compounds were initially screened for their antimicrobial activity against ATCC 6538, NCTC 10400, NCTC 10418, and ATCC 27853. During initial screening, compounds (P1, P6, and P11) presented significant antimicrobial activity through disc diffusion assay. These compounds were further evaluated for antimicrobial activity at different time points against Gram-positive and Gram-negative bacteria and presented significant activity for 6 hours. The activity was found to be greater against Gram-positive bacteria. In contrast at 24 hours, the activity was found only against Gram-positive bacteria except compound (P11), showing activity against both types of bacteria. Compound (P11) was found to have highest activity against both Gram-positive and Gram-negative bacteria.


2016 ◽  
Vol 39 (7) ◽  
pp. 978-988 ◽  
Author(s):  
Bo Li ◽  
Wei Kang ◽  
Hanhan Liu ◽  
Yanrong Wang ◽  
Changzhong Yu ◽  
...  

Marine Drugs ◽  
2021 ◽  
Vol 19 (8) ◽  
pp. 411
Author(s):  
Maxence Quemener ◽  
Marie Dayras ◽  
Nicolas Frotté ◽  
Stella Debaets ◽  
Christophe Le Meur ◽  
...  

Among the different tools to address the antibiotic resistance crisis, bioprospecting in complex uncharted habitats to detect novel microorganisms putatively producing original antimicrobial compounds can definitely increase the current therapeutic arsenal of antibiotics. Fungi from numerous habitats have been widely screened for their ability to express specific biosynthetic gene clusters (BGCs) involved in the synthesis of antimicrobial compounds. Here, a collection of unique 75 deep oceanic crust fungi was screened to evaluate their biotechnological potential through the prism of their antimicrobial activity using a polyphasic approach. After a first genetic screening to detect specific BGCs, a second step consisted of an antimicrobial screening that tested the most promising isolates against 11 microbial targets. Here, 12 fungal isolates showed at least one antibacterial and/or antifungal activity (static or lytic) against human pathogens. This analysis also revealed that Staphylococcus aureus ATCC 25923 and Enterococcus faecalis CIP A 186 were the most impacted, followed by Pseudomonas aeruginosa ATCC 27853. A specific focus on three fungal isolates allowed us to detect interesting activity of crude extracts against multidrug-resistant Staphylococcus aureus. Finally, complementary mass spectrometry (MS)-based molecular networking analyses were performed to putatively assign the fungal metabolites and raise hypotheses to link them to the observed antimicrobial activities.


Sign in / Sign up

Export Citation Format

Share Document