scholarly journals Highlighting the Biotechnological Potential of Deep Oceanic Crust Fungi through the Prism of Their Antimicrobial Activity

Marine Drugs ◽  
2021 ◽  
Vol 19 (8) ◽  
pp. 411
Author(s):  
Maxence Quemener ◽  
Marie Dayras ◽  
Nicolas Frotté ◽  
Stella Debaets ◽  
Christophe Le Meur ◽  
...  

Among the different tools to address the antibiotic resistance crisis, bioprospecting in complex uncharted habitats to detect novel microorganisms putatively producing original antimicrobial compounds can definitely increase the current therapeutic arsenal of antibiotics. Fungi from numerous habitats have been widely screened for their ability to express specific biosynthetic gene clusters (BGCs) involved in the synthesis of antimicrobial compounds. Here, a collection of unique 75 deep oceanic crust fungi was screened to evaluate their biotechnological potential through the prism of their antimicrobial activity using a polyphasic approach. After a first genetic screening to detect specific BGCs, a second step consisted of an antimicrobial screening that tested the most promising isolates against 11 microbial targets. Here, 12 fungal isolates showed at least one antibacterial and/or antifungal activity (static or lytic) against human pathogens. This analysis also revealed that Staphylococcus aureus ATCC 25923 and Enterococcus faecalis CIP A 186 were the most impacted, followed by Pseudomonas aeruginosa ATCC 27853. A specific focus on three fungal isolates allowed us to detect interesting activity of crude extracts against multidrug-resistant Staphylococcus aureus. Finally, complementary mass spectrometry (MS)-based molecular networking analyses were performed to putatively assign the fungal metabolites and raise hypotheses to link them to the observed antimicrobial activities.

2009 ◽  
Vol 1 (2) ◽  
Author(s):  
Risa Nofiani ◽  
Siti Nurbetty ◽  
Ajuk Sapar

<p>The increase of issues on the antibiotics resistant pathogenic bacteria has triggered high exploration for new antimicrobial compounds. One of the potential sources is sponge-associated bacteria. The aim of this study was to get sponge-associated bacteria extract containing antimicrobial activities. On the basis screening of antimicrobial activity using by streaking on agar medium, there were two potential isolates with antimicrobial activities namely LCS1 and LCS2. The two isolates were cultivated,then secondary metabolite product were extracted using methanol as a solvent. Minimum inhibitory concentrations (MICs) of extract LCS 1 were 1,000 μg/well for S. aureus, 950 μg/well for Salmonella sp.and 800 μg/well for Bacillus subtilis. Minimum inhibitory concentrations of extract LCS 2 were 500 μg/well for S. aureus, 1,050 μg/well for Salmonella sp., 750 μg/well for Bacillus subtilis, 350 μg/well for P. aeruginosa, 750 μg/sumur terhadap B. subtilis. Based on the MIC values, the two assay extracts have a relatively low antimicrobial activity.</p> <p>Keywords:Antimicrobial,Sponges associated bacteria,MICs</p>


2021 ◽  
Vol 9 (1) ◽  
pp. 171
Author(s):  
Yitayal S. Anteneh ◽  
Qi Yang ◽  
Melissa H. Brown ◽  
Christopher M. M. Franco

The misuse and overuse of antibiotics have led to the emergence of multidrug-resistant microorganisms, which decreases the chance of treating those infected with existing antibiotics. This resistance calls for the search of new antimicrobials from prolific producers of novel natural products including marine sponges. Many of the novel active compounds reported from sponges have originated from their microbial symbionts. Therefore, this study aims to screen for bioactive metabolites from bacteria isolated from sponges. Twelve sponge samples were collected from South Australian marine environments and grown on seven isolation media under four incubation conditions; a total of 1234 bacterial isolates were obtained. Of these, 169 bacteria were tested in media optimized for production of antimicrobial metabolites and screened against eleven human pathogens. Seventy bacteria were found to be active against at least one test bacterial or fungal pathogen, while 37% of the tested bacteria showed activity against Staphylococcus aureus including methicillin-resistant strains and antifungal activity was produced by 21% the isolates. A potential novel active compound was purified possessing inhibitory activity against S. aureus. Using 16S rRNA, the strain was identified as Streptomyces sp. Our study highlights that the marine sponges of South Australia are a rich source of abundant and diverse bacteria producing metabolites with antimicrobial activities against human pathogenic bacteria and fungi.


Antibiotics ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 109
Author(s):  
Alexander Lammers ◽  
Michael Lalk ◽  
Paolina Garbeva

We are currently facing an antimicrobial resistance crisis, which means that a lot of bacterial pathogens have developed resistance to common antibiotics. Hence, novel and innovative solutions are urgently needed to combat resistant human pathogens. A new source of antimicrobial compounds could be bacterial volatiles. Volatiles are ubiquitous produced, chemically divers and playing essential roles in intra- and interspecies interactions like communication and antimicrobial defense. In the last years, an increasing number of studies showed bioactivities of bacterial volatiles, including antibacterial, antifungal and anti-oomycete activities, indicating bacterial volatiles as an exciting source for novel antimicrobial compounds. In this review we introduce the chemical diversity of bacterial volatiles, their antimicrobial activities and methods for testing this activity. Concluding, we discuss the possibility of using antimicrobial volatiles to antagonize the antimicrobial resistance crisis.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Ana Carolina Oliveira Silva ◽  
Elidiane Fonseca Santana ◽  
Antonio Marcos Saraiva ◽  
Felipe Neves Coutinho ◽  
Ricardo Henrique Acre Castro ◽  
...  

The development of the present study was based on selections using random, direct ethnopharmacological, and indirect ethnopharmacological approaches, aiming to evaluate which method is the best for bioprospecting new antimicrobial plant drugs. A crude extract of 53 species of herbaceous plants collected in the semiarid region of Northeast Brazil was tested against 11 microorganisms. Well-agar diffusion and minimum inhibitory concentration (MIC) techniques were used. Ten extracts from direct, six from random, and three from indirect ethnopharmacological selections exhibited activities that ranged from weak to very active against the organisms tested. The strain most susceptible to the evaluated extracts wasStaphylococcus aureus. The MIC analysis revealed the best result for the direct ethnopharmacological approach, considering that some species yielded extracts classified as active or moderately active (MICs between 250 and 1000 µg/mL). Furthermore, one species from this approach inhibited the growth of the threeCandidastrains. Thus, it was concluded that the direct ethnopharmacological approach is the most effective when selecting species for bioprospecting new plant drugs with antimicrobial activities.


2006 ◽  
Vol 50 (2) ◽  
pp. 806-809 ◽  
Author(s):  
Giuseppantonio Maisetta ◽  
Giovanna Batoni ◽  
Semih Esin ◽  
Walter Florio ◽  
Daria Bottai ◽  
...  

ABSTRACT The antimicrobial activity of human β-defensin 3 (hBD-3) against multidrug-resistant clinical isolates of Staphylococcus aureus, Enterococcus faecium, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, and Acinetobacter baumannii was evaluated. A fast bactericidal effect (within 20 min) against all bacterial strains tested was observed. The presence of 20% human serum abolished the bactericidal activity of hBD-3 against gram-negative strains and reduced the activity of the peptide against gram-positive strains.


Antibiotics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 667 ◽  
Author(s):  
Marwa I. Abd El-Hamid ◽  
El-sayed Y. El-Naenaeey ◽  
Toka M kandeel ◽  
Wael A. H. Hegazy ◽  
Rasha A. Mosbah ◽  
...  

Multidrug resistant (MDR) methicillin-resistant Staphylococcus aureus (MRSA) is a superbug pathogen that causes serious diseases. One of the main reasons for the lack of the effectiveness of antibiotic therapy against infections caused by this resistant pathogen is the recalcitrant nature of MRSA biofilms, which results in an increasingly serious situation worldwide. Consequently, the development of innovative biofilm inhibitors is urgently needed to control the biofilm formation by this pathogen. In this work, we thus sought to evaluate the biofilm inhibiting ability of some promising antibiofilm agents such as zinc oxide nanoparticles (Zno NPs), proteinase K, and hamamelitannin (HAM) in managing the MRSA biofilms. Different phenotypic and genotypic methods were used to identify the biofilm producing MDR MRSA isolates and the antibiofilm/antimicrobial activities of the used promising agents. Our study demonstrated strong antibiofilm activities of ZnO NPs, proteinase K, and HAM against MRSA biofilms along with their transcriptional modulation of biofilm (intercellular adhesion A, icaA) and quorum sensing (QS) (agr) genes. Interestingly, only ZnO NPs showed a powerful antimicrobial activity against this pathogen. Collectively, we observed overall positive correlations between the biofilm production and the antimicrobial resistance/agr genotypes II and IV. Meanwhile, there was no significant correlation between the toxin genes and the biofilm production. The ZnO NPs were recommended to be used alone as potent antimicrobial and antibiofilm agents against MDR MRSA and their biofilm-associated diseases. On the other hand, proteinase-K and HAM can be co-administrated with other antimicrobial agents to manage such types of infections.


mBio ◽  
2019 ◽  
Vol 10 (5) ◽  
Author(s):  
Karine Loth ◽  
Agnès Vergnes ◽  
Cairé Barreto ◽  
Sébastien N. Voisin ◽  
Hervé Meudal ◽  
...  

ABSTRACT Big defensins, ancestors of β-defensins, are composed of a β-defensin-like C-terminal domain and a globular hydrophobic ancestral N-terminal domain. This unique structure is found in a limited number of phylogenetically distant species, including mollusks, ancestral chelicerates, and early-branching cephalochordates, mostly living in marine environments. One puzzling evolutionary issue concerns the advantage for these species of having maintained a hydrophobic domain lost during evolution toward β-defensins. Using native ligation chemistry, we produced the oyster Crassostrea gigas BigDef1 (Cg-BigDef1) and its separate domains. Cg-BigDef1 showed salt-stable and broad-range bactericidal activity, including against multidrug-resistant human clinical isolates of Staphylococcus aureus. We found that the ancestral N-terminal domain confers salt-stable antimicrobial activity to the β-defensin-like domain, which is otherwise inactive. Moreover, upon contact with bacteria, the N-terminal domain drives Cg-BigDef1 assembly into nanonets that entrap and kill bacteria. We speculate that the hydrophobic N-terminal domain of big defensins has been retained in marine phyla to confer salt-stable interactions with bacterial membranes in environments where electrostatic interactions are impaired. Those remarkable properties open the way to future drug developments when physiological salt concentrations inhibit the antimicrobial activity of vertebrate β-defensins. IMPORTANCE β-Defensins are host defense peptides controlling infections in species ranging from humans to invertebrates. However, the antimicrobial activity of most human β-defensins is impaired at physiological salt concentrations. We explored the properties of big defensins, the β-defensin ancestors, which have been conserved in a number of marine organisms, mainly mollusks. By focusing on a big defensin from oyster (Cg-BigDef1), we showed that the N-terminal domain lost during evolution toward β-defensins confers bactericidal activity to Cg-BigDef1, even at high salt concentrations. Cg-BigDef1 killed multidrug-resistant human clinical isolates of Staphylococcus aureus. Moreover, the ancestral N-terminal domain drove the assembly of the big defensin into nanonets in which bacteria are entrapped and killed. This discovery may explain why the ancestral N-terminal domain has been maintained in diverse marine phyla and creates a new path of discovery to design β-defensin derivatives active at physiological and high salt concentrations.


2014 ◽  
Vol 58 (7) ◽  
pp. 4113-4122 ◽  
Author(s):  
Mohamed F. Mohamed ◽  
Maha I. Hamed ◽  
Alyssa Panitch ◽  
Mohamed N. Seleem

ABSTRACTThe seriousness of microbial resistance combined with the lack of new antimicrobials has increased interest in the development of antimicrobial peptides (AMPs) as novel therapeutics. In this study, we evaluated the antimicrobial activities of two short synthetic peptides, namely, RRIKA and RR. These peptides exhibited potent antimicrobial activity againstStaphylococcus aureus, and their antimicrobial effects were significantly enhanced by addition of three amino acids in the C terminus, which consequently increased the amphipathicity, hydrophobicity, and net charge. Moreover, RRIKA and RR demonstrated a significant and rapid bactericidal effect against clinical and drug-resistantStaphylococcusisolates, including methicillin-resistantStaphylococcus aureus(MRSA), vancomycin-intermediateS. aureus(VISA), vancomycin-resistantS. aureus(VRSA), linezolid-resistantS. aureus, and methicillin-resistantStaphylococcus epidermidis. In contrast to many natural AMPs, RRIKA and RR retained their activity in the presence of physiological concentrations of NaCl and MgCl2. Both RRIKA and RR enhanced the killing of lysostaphin more than 1,000-fold and eradicated MRSA and VRSA isolates within 20 min. Furthermore, the peptides presented were superior in reducing adherent biofilms ofS. aureusandS. epidermidiscompared to results with conventional antibiotics. Our findings indicate that the staphylocidal effects of our peptides were through permeabilization of the bacterial membrane, leading to leakage of cytoplasmic contents and cell death. Furthermore, peptides were not toxic to HeLa cells at 4- to 8-fold their antimicrobial concentrations. The potent and salt-insensitive antimicrobial activities of these peptides present an attractive therapeutic candidate for treatment of multidrug-resistantS. aureusinfections.


1994 ◽  
Vol 302 (2) ◽  
pp. 535-538 ◽  
Author(s):  
J Alvarez-Bravo ◽  
S Kurata ◽  
S Natori

Previously, we identified a core undecapeptide of sapecin B having antimicrobial activity. Based on the structure of this peptide, we systematically synthesized peptides consisting of terminal basic motifs and internal oligo-leucine sequences and examined their antimicrobial activities. Of these peptides, RLKLLLLLRLK-NH2 and KLKLLLLLKLK-NH2 were found to have potent microbicidal activity against Staphylococcus aureus, Escherichia coli, methicillin-resistant S. aureus and Candida albicans in liquid medium. We also synthesized the D-enantiomer of KLKLLLLLKLK-NH2. This enantiomer was resistant to tryptic digestion and persisted longer in the culture medium, showing greater antimicrobial activity than the original peptide.


Sign in / Sign up

Export Citation Format

Share Document