Neuroinflammatory State of Multiple Sclerosis and Strategies for Biotherapeutics Development

Author(s):  
Samira Soltanmoradi ◽  
Fatemeh Kouhkan ◽  
Iman Rad

Multiple Sclerosis (MS) is the most prevalent neurological disability in young adults. The pathogenesis of MS is characterized by demyelination and neurodegeneration in the central nervous system (CNS) as the ruinous result of chronic activation of the immune system. All clinical forms of MS, including relapsing-remitting multiple sclerosis (RRMS), secondary progressive multiple sclerosis (SPMS), and the primary progressive MS (PPMS), demonstrate inflammation as a common symptom. In various autoimmune diseases like MS, the ability of the immune system to set a balance between pro-inflammatory and anti-inflammatory responses is lost. In this review, the imbalance between pro-inflammatory and anti-inflammatory responses of immune cells and their role in MS progression is discussed. Disturbing the balance of Th1/Th2 and Th17/Treg cells and M1/M2 phenotypes of macrophages and microglial plays a key role in the development and progression of MS. In this review, we first depict an outline of regulatory immune cells involved in inflammation. Second, we discuss shreds of evidence that confirm how B cells play both pathogenic and protective roles in MS disease. Third, we point out the pros and cons of B cell/T cell-targeted therapies in clinical trials.

F1000Research ◽  
2015 ◽  
Vol 4 ◽  
pp. 517 ◽  
Author(s):  
Catriona A. Wagner ◽  
Joan M. Goverman

The last twelve years have witnessed the development of new therapies for relapsing-remitting multiple sclerosis that demonstrate increased efficacy relative to previous therapies. Many of these new drugs target the inflammatory phase of disease by manipulating different aspects of the immune system. While these new treatments are promising, the development of therapies for patients with progressive multiple sclerosis remains a significant challenge. We discuss the distinct mechanisms that may contribute to these two types of multiple sclerosis and the implications of these differences in the development of new therapeutic targets for this debilitating disease.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1507
Author(s):  
Soyoung Choi ◽  
Li Guo ◽  
Maria Francesca Cordeiro

Microglia are the resident immune cells of the central nervous system (CNS), including the retina. Similar to brain microglia, retinal microglia are responsible for retinal surveillance, rapidly responding to changes in the environment by altering morphotype and function. Microglia become activated in inflammatory responses in neurodegenerative diseases, including multiple sclerosis (MS). When activated by stress stimuli, retinal microglia change their morphology and activity, with either beneficial or harmful consequences. In this review, we describe characteristics of CNS microglia, including those in the retina, with a focus on their morphology, activation states and function in health, ageing, MS and other neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, glaucoma and retinitis pigmentosa, to highlight their activity in disease. We also discuss contradictory findings in the literature and the potential ways of reducing inconsistencies in future by using standardised methodology, e.g., automated algorithms, to enable a more comprehensive understanding of this exciting area of research.


2017 ◽  
Author(s):  
◽  
NA Patsopoulos ◽  
SE Baranzini ◽  
A Santaniello ◽  
P Shoostari ◽  
...  

Abstract:We assembled and analyzed genetic data of 47,351 multiple sclerosis (MS) subjects and 68,284 control subjects and establish a reference map of the genetic architecture of MS that includes 200 autosomal susceptibility variants outside the major histocompatibility complex (MHC), one chromosome X variant, and 32 independent associations within the extended MHC. We used an ensemble of methods to prioritize up to 551 potentially associated MS susceptibility genes, that implicate multiple innate and adaptive pathways distributed across the cellular components of the immune system. Using expression profiles from purified human microglia, we do find enrichment for MS genes in these brain - resident immune cells. Thus, while MS is most likely initially triggered by perturbation of peripheral immune responses the functional responses of microglia and other brain cells are also altered and may have a role in targeting an autoimmune process to the central nervous system.One Sentence Summary:We report a detailed genetic and genomic map of multiple sclerosis, and describe the role of putatively affected genes in the peripheral immune system and brain resident microglia.


Biomedicines ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 56 ◽  
Author(s):  
Gabrielle Macaron ◽  
Daniel Ontaneda

Multiple sclerosis is a chronic autoimmune disease of the central nervous system that results in varying degrees of disability. Progressive multiple sclerosis, characterized by a steady increase in neurological disability independently of relapses, can occur from onset (primary progressive) or after a relapsing–remitting course (secondary progressive). As opposed to active inflammation seen in the relapsing–remitting phases of the disease, the gradual worsening of disability in progressive multiple sclerosis results from complex immune mechanisms and neurodegeneration. A few anti-inflammatory disease-modifying therapies with a modest but significant effect on measures of disease progression have been approved for the treatment of progressive multiple sclerosis. The treatment effect of anti-inflammatory agents is particularly observed in the subgroup of patients with younger age and evidence of disease activity. For this reason, a significant effort is underway to develop molecules with the potential to induce myelin repair or halt the degenerative process. Appropriate trial methodology and the development of clinically meaningful disability outcome measures along with imaging and biological biomarkers of progression have a significant impact on the ability to measure the efficacy of potential medications that may reverse disease progression. In this issue, we will review current evidence on the physiopathology, diagnosis, measurement of disability, and treatment of progressive multiple sclerosis.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Tian-Yu Lei ◽  
Ying-Ze Ye ◽  
Xi-Qun Zhu ◽  
Daniel Smerin ◽  
Li-Juan Gu ◽  
...  

AbstractThrough considerable effort in research and clinical studies, the immune system has been identified as a participant in the onset and progression of brain injury after ischaemic stroke. Due to the involvement of all types of immune cells, the roles of the immune system in stroke pathology and associated effects are complicated. Past research concentrated on the functions of monocytes and neutrophils in the pathogenesis of ischaemic stroke and tried to demonstrate the mechanisms of tissue injury and protection involving these immune cells. Within the past several years, an increasing number of studies have elucidated the vital functions of T cells in the innate and adaptive immune responses in both the acute and chronic phases of ischaemic stroke. Recently, the phenotypes of T cells with proinflammatory or anti-inflammatory function have been demonstrated in detail. T cells with distinctive phenotypes can also influence cerebral inflammation through various pathways, such as regulating the immune response, interacting with brain-resident immune cells and modulating neurogenesis and angiogenesis during different phases following stroke. In view of the limited treatment options available following stroke other than tissue plasminogen activator therapy, understanding the function of immune responses, especially T cell responses, in the post-stroke recovery period can provide a new therapeutic direction. Here, we discuss the different functions and temporal evolution of T cells with different phenotypes during the acute and chronic phases of ischaemic stroke. We suggest that modulating the balance between the proinflammatory and anti-inflammatory functions of T cells with distinct phenotypes may become a potential therapeutic approach that reduces the mortality and improves the functional outcomes and prognosis of patients suffering from ischaemic stroke.


2021 ◽  
pp. 135245852110017
Author(s):  
Lisa Eunyoung Lee ◽  
Irene M Vavasour ◽  
Adam Dvorak ◽  
Hanwen Liu ◽  
Shawna Abel ◽  
...  

Background: Myelin water imaging (MWI) was recently optimized to provide quantitative in vivo measurement of spinal cord myelin, which is critically involved in multiple sclerosis (MS) disability. Objective: To assess cervical cord myelin measurements in relapsing-remitting multiple sclerosis (RRMS) and progressive multiple sclerosis (ProgMS) participants and evaluate the correlation between myelin measures and clinical disability. Methods: We used MWI data from 35 RRMS, 30 ProgMS, and 28 healthy control (HC) participants collected at cord level C2/C3 on a 3 T magnetic resonance imaging (MRI) scanner. Myelin heterogeneity index (MHI), a measurement of myelin variability, was calculated for whole cervical cord, global white matter, dorsal column, lateral and ventral funiculi. Correlations were assessed between MHI and Expanded Disability Status Scale (EDSS), 9-Hole Peg Test (9HPT), timed 25-foot walk, and disease duration. Results: In various regions of the cervical cord, ProgMS MHI was higher compared to HC (between 9.5% and 31%, p ⩽ 0.04) and RRMS (between 13% and 26%, p ⩽ 0.02), and ProgMS MHI was associated with EDSS ( r = 0.42–0.52) and 9HPT ( r = 0.45–0.52). Conclusion: Myelin abnormalities within clinically eloquent areas are related to clinical disability. MWI metrics have a potential role for monitoring subclinical disease progression and adjudicating treatment efficacy for new therapies targeting ProgMS.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii124-ii124
Author(s):  
Jan Remsik ◽  
Xinran Tong ◽  
Ugur Sener ◽  
Danille Isakov ◽  
Yudan Chi ◽  
...  

Abstract For decades, the central nervous system was considered to be an immune privileged organ with limited access to systemic immunity. However, the leptomeninges, the cerebrospinal fluid (CSF)-filled anatomical structure that protects the brain and spinal cord, represent a relatively immune-rich environment. Despite the presence of immune cells, complications in the CSF, such as infectious meningitis and a neurological development of cancer known as leptomeningeal metastasis, are difficult to treat and are frequently fatal. We show that immune cells entering the CSF are held in an ‘idle’ state that limits their cytotoxic arsenal and antigen presentation machinery. To understand this underappreciated neuroanatomic niche, we used unique mouse models and rare patient samples to characterize its cellular composition and critical signaling events in health and disease at a single-cell resolution. Revealing the mediators of CSF immune response will allow us to re-evaluate current therapeutic protocols and employ rational combinations with immunotherapies, therefore turning the patient’s own immune system into an active weapon against pathogens and cancer.


2018 ◽  
Vol 4 (4) ◽  
pp. 205521731881551 ◽  
Author(s):  
L De Meijer ◽  
D Merlo ◽  
O Skibina ◽  
EJ Grobbee ◽  
J Gale ◽  
...  

Background Cognitive monitoring that can detect short-term change in multiple sclerosis is challenging. Computerized cognitive batteries such as the CogState Brief Battery can rapidly assess commonly affected cognitive domains. Objectives The purpose of this study was to establish the acceptability and sensitivity of the CogState Brief Battery in multiple sclerosis patients compared to controls. We compared the sensitivity of the CogState Brief Battery to that of the Paced Auditory Serial Addition Test over 12 months. Methods Demographics, Expanded Disability Status Scale scores, depression and anxiety scores were compared with CogState Brief Battery and Paced Auditory Serial Addition Test performances of 51 patients with relapsing–remitting multiple sclerosis, 19 with secondary progressive multiple sclerosis and 40 healthy controls. Longitudinal data in 37 relapsing–remitting multiple sclerosis patients were evaluated using linear mixed models. Results Both the CogState Brief Battery and the Paced Auditory Serial Addition Test discriminated between multiple sclerosis and healthy controls at baseline ( p<0.001). CogState Brief Battery tasks were more acceptable and caused less anxiety than the Paced Auditory Serial Addition Test ( p<0.001). In relapsing–remitting multiple sclerosis patients, reaction time slowed over 12 months ( p<0.001) for the CogState Brief Battery Detection (mean change –34.23 ms) and Identification (–25.31 ms) tasks. Paced Auditory Serial Addition Test scores did not change over this time. Conclusions The CogState Brief Battery is highly acceptable and better able to detect cognitive change than the Paced Auditory Serial Addition Test. The CogState Brief Battery could potentially be used as a practical cognitive monitoring tool in the multiple sclerosis clinic setting.


2017 ◽  
Vol 24 (4) ◽  
pp. 472-480 ◽  
Author(s):  
Cyra E Leurs ◽  
Petar Podlesniy ◽  
Ramon Trullas ◽  
Lisanne Balk ◽  
Martijn D Steenwijk ◽  
...  

Background: Mitochondrial dysfunction is increasingly recognized as an important feature of multiple sclerosis (MS) pathology and may be relevant for clinical disease progression. However, it is unknown whether mitochondrial DNA (mtDNA) levels in the cerebrospinal fluid (CSF) associate with disease progression and therapeutic response. Objectives: To evaluate whether CSF concentrations of mtDNA in MS patients can serve as a marker of ongoing neuropathology and may be helpful to differentiate between MS disease subtypes. To explore the effect of disease-modifying therapies on mtDNA levels in the CSF. Methods: CSF mtDNA was measured using a digital polymerase chain reaction (PCR) CSF mtDNA in two independent MS cohorts. The cohorts included 92 relapsing-remitting multiple sclerosis (RRMS) patients, 40 progressive multiple sclerosis (PMS) patients (27 secondary progressive and 13 primary progressive), 50 various neurologic disease controls, and 5 healthy controls. Results: Patients with PMS showed a significant increase in CSF mtDNA compared to non-inflammatory neurologic disease controls. Patients with higher T2 lesion volumes and lower normalized brain volumes showed increased concentration of mtDNA. Patients treated with fingolimod had significantly lower mtDNA copy levels at follow-up compared to baseline. Conclusion: Our results showed a non-specific elevation of concentration of mtDNA in PMS patients. mtDNA concentrations respond to fingolimod and may be used to monitor biological effect of this treatment.


Sign in / Sign up

Export Citation Format

Share Document