scholarly journals Improving the Environmental Safety of Combustion Products in the Development of Designs of Magnetic-Electric Activators for Industrial Gas Combustion

2022 ◽  
Author(s):  
Vitaliy V. Chelnokov ◽  
Elena Zabolotnaya ◽  
Aleksey V. Matasov ◽  
Andrey N. Glushko ◽  
Stanyslav V. Michailin

The aim of this research was to examine the combustion process of the magnetic-electric activation of hydrocarbon-containing waste gases for heat generation. A method for analyzing the composition of the gases was also developed. Keywords: industrial gas combustion, magnetic-electric activation, heat generation

2014 ◽  
Vol 35 (2) ◽  
pp. 181-190 ◽  
Author(s):  
Małgorzata Wilk ◽  
Aneta Magdziarz ◽  
Monika Zajemska ◽  
Monika Kuźnia

Abstract The paper aims to confirm the syngas application as a reburning fuel to reduce e.g. NO emission during natural gas combustion. The main aim of this modelling work was to predict pollutants generated in the exhaust gases and to indicate the influence of the syngas on the natural gas combustion process. The effect of residence time of fuel-air mixture was also been performed. Calculations were made with CHEMIKN-PRO for reburning process using syngas. The boundary conditions of the reburning process were based on experimental investigations. The addition of 5, 10, 15 and 19% of reburning fuel into natural gas combustion was studied. The effects of 0.001 to 10 s of residence time and the addition of 5, 10, and 15% of syngas on combustion products were determined. The performed numerical tests confirmed that co-combustion of the natural gas with syngas (obtained from sewage sludge gasification) in the reburning process is an efficient method of NOx reduction by c.a. 50%. Syngas produced from sewage sludge can be utilised as a reburning fuel.


Author(s):  
B.S. Soroka ◽  
V.V. Horupa

Natural gas NG consumption in industry and energy of Ukraine, in recent years falls down as a result of the crisis in the country’s economy, to a certain extent due to the introduction of renewable energy sources along with alternative technologies, while in the utility sector the consumption of fuel gas flow rate enhancing because of an increase the number of consumers. The natural gas is mostly using by domestic purpose for heating of premises and for cooking. These items of the gas utilization in Ukraine are already exceeding the NG consumption in industry. Cooking is proceeding directly in the living quarters, those usually do not meet the requirements of the Ukrainian norms DBN for the ventilation procedures. NG use in household gas stoves is of great importance from the standpoint of controlling the emissions of harmful components of combustion products along with maintenance the satisfactory energy efficiency characteristics of NG using. The main environment pollutants when burning the natural gas in gas stoves are including the nitrogen oxides NOx (to a greater extent — highly toxic NO2 component), carbon oxide CO, formaldehyde CH2O as well as hydrocarbons (unburned UHC and polyaromatic PAH). An overview of environmental documents to control CO and NOx emissions in comparison with the proper norms by USA, EU, Russian Federation, Australia and China, has been completed. The modern designs of the burners for gas stoves are considered along with defining the main characteristics: heat power, the natural gas flow rate, diameter of gas orifice, diameter and spacing the firing openings and other parameters. The modern physical and chemical principles of gas combustion by means of atmospheric ejection burners of gas cookers have been analyzed from the standpoints of combustion process stabilization and of ensuring the stability of flares. Among the factors of the firing process destabilization within the framework of analysis above mentioned, the following forms of unstable combustion/flame unstabilities have been considered: flashback, blow out or flame lifting, and the appearance of flame yellow tips. Bibl. 37, Fig. 11, Tab. 7.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Ali Hasan ◽  
Oskar J. Haidn

AbstractThe Paris Agreement has highlighted the need in reducing carbon emissions. Attempts in using lower carbon fuels such as Propane gas have seen limited success, mainly due to liquid petroleum gas tanks structural/size limitations. A compromised solution is presented, by combusting Jet A fuel with a small fraction of Propane gas. Propane gas with its relatively faster overall igniting time, expedites the combustion process. Computational fluid dynamics software was used to demonstrate this solution, with results validated against physical engine data. Jet A fuel was combusted with different Propane gas dosing fractions. Results demonstrated that depending on specific propane gas dosing fractions emission reductions in ppm are; NOx from 84 to 41, CO2 from less than 18,372 to less than 15,865, escaping unburned fuels dropped from 11.4 (just Jet A) to 6.26e-2 (with a 0.2 fraction of Propane gas). Soot and CO increased, this is due to current combustion chamber air mixing design.


2014 ◽  
Vol 13 (2) ◽  
pp. 5-17
Author(s):  
Agnieszka Bok ◽  
Joanna Guziałowska-Tic ◽  
Wilhelm Jan Tic

Abstract The dynamic growth of the use of non-renewable fuels for energy purposes results in demand for catalysts to improve their combustion process. The paper describes catalysts used mainly in the processes of combustion of motor fuels and fuel oils. These catalysts make it possible to raise the efficiency of oxidation processes simultanously reducing the emission of pollutants. The key to success is the selection of catalyst compounds that will reduce harmful emissions of combustion products into the atmosphere. Catalysts are introduced into the combustion zone in form of solutions miscible with fuel or with air supplied to the combustion process. The following compounds soluble in fuel are inclused in the composition of the described catalysts: organometallic complexes, manganese compounds, salts originated from organic acids, ferrocen and its derivatives and sodium chloride and magnesium chloride responsible for burning the soot (chlorides). The priority is to minimize emissions of volatile organic compounds, nitrogen oxides, sulphur oxides, and carbon monoxide, as well as particulate matter.


2021 ◽  
pp. 12-17
Author(s):  
M. A. Vaganov

It is proposed to use the methods of applied optical spectroscopy to solve the problem of control and diagnostics of gaseous hydrocarbon fuel combustion in this work. The results of an experimental study of spectroscopic informative parameters characterizing the propane combustion process are presented for three modes: combustion of pure propane without air supply, stoichiometric combustion and combustion with a change in the amount of supplied air relative to stoichiometric combustion. As a result of the experiment, it was found that the most intense bands in the emission spectrum of the flame arising from the combustion of propane correspond to the spectral bands of radicals of combustion products: OH, CH, and C2. While the intensities of various systems of bands in the flame spectrum depend significantly on the composition of the combustible mixture.


1968 ◽  
Vol 8 (04) ◽  
pp. 323-324
Author(s):  
C.H. Kuo

In the underground combustion process, part of the heat generated at the combustion front is carried downstream by convection. Temperature distribution in the combustion process can be obtained by including a delta function for heat generation at the combustion surface. This is similar to the hot-fluid injection model of Lauwerier. The dimensionless temperature in the reservoir, phi T1(x, t), and the overburden, phi T2(x, y, t), are as follows: ..........................................(1) ..........................................(2) The ratio R of the heat-front velocity, u, h, to the combustion front velocity, uc, is one of the most important factors governing the temperature distribution in the pay zone. For cases of ub less than uc, no heat is carried ahead of the combustion front and the temperature at the combustion front remains constant for all times. The fraction of the heat stored between the heat front and the combustion front decreases as the time increases. This is because more of the heat is consumed in heating the formation behind the heat front and in heating the cap and bass rock. A more advantageous condition obtains for uh is greater than uc. For this case, the formation ahead of the combustion front is preheated and the amount of heat in this region increases with time. Therefore, due to heat generation and preheating, the total temperature rise at the combustion front also increases with time. Eq. 1 also shows that the temperature at the combustion front is higher at a given time for a thinner reservoir. This seemingly paradoxical result takes place because the amount paradoxical result takes place because the amount of heat recovered from the overburden and subrock upstream of the combustion front is almost independent of the pay zone thickness. On the other hand, this heat is distributed in the pay zone, which has a heat content directly proportional to the formation thickness b. For thin reservoirs, therefore, the temperature rise in the pay zone due to heat recuperation is higher than that in thick reservoirs. For very thick pay zones (h-oo) there would be no heat recuperation, and consequently the combustion- front temperatures would be lowest. For many cases encountered, uh is smaller than uc. Convective-heat transport. ahead of the combustion front can be achieved by increasing uh to obtain the condition uh, >uc. The wet and partially quenched combustion processes have a similar objective. The temperature at the combustion front, however, decreases as the uh/uc ratio increases. If this temperature should fall below the ignition point, the fire would die out. Consequently, at any point, the fire would die out. Consequently, at any time there exists a maximum ratio of uh/uc for which the formation ahead of the combustion front can be heated to increase oil mobility while combustion is maintained. For the case where the heat front moves faster than the combustion front (uh is greater than uc), the downstream heat efficiency E can be derived by applying the integration method given in Ref. 3. P. 323


2015 ◽  
Vol 1758 ◽  
Author(s):  
Ian Monk ◽  
Rayon Williams ◽  
Xinhang Liu ◽  
Edward L. Dreizin

AbstractReactive nanocomposite powders with compositions 2Al∙3CuO, 2.35Al∙Bi2O3, 2Al∙Fe2O3, and 2Al∙MoO3 were prepared by arrested reactive milling, placed in monolayers on a conductive substrate and ignited by an electro-static discharge (ESD) or spark in air, argon, and vacuum. The ESD was produced by discharging a 2000 pF capacitor charged to a voltage varied from 5 to 20 kV. Emission from ignited particles was monitored using a photomultiplier equipped with an interference filter. Experimental variables included particle sizes, milling time used to prepare composite particles, surrounding environment, and starting ESD voltage. All materials ignited in all environments, producing individual burning particles that were ejected from the substrate. The spark duration varied from 1 to 5 µs; the duration of the produced emission pulse was in the range of 80 – 250 µs for all materials studied. The longest emission duration was observed for the nanocomposite thermite using MoO3 as an oxidizer. The reaction rates of the ESD-initiated powders were defined primarily by the scale of mixing of and reactive interface area between the fuel and oxidizer in composite materials rather than by the external particle surface or particle dimensions. In vacuum, particles were heated by ESD while remaining on the substrate until they began generating gas combustion products. In air and argon, particles initially pre-heated by ESD were lifted and accelerated to ca. 100 m/s by the generated shock wave; the airborne particles continued self-heating due to heterogeneous redox reactions.


2020 ◽  
Vol 177 ◽  
pp. 03019
Author(s):  
Stanislav Davydov ◽  
Rafail Apakashev ◽  
Konstantin Kokarev

An increase in the heat transfer efficiency of the open-type heat recovery unit due to the sequential heat and mass transfer enhancement is considered. The graphs of variances in the water temperature, gas temperature, gas enthalpy and gas specific humidity at the end of each site are presented. The proposed designs of the open-type heat recovery unit can be used for the flue gas disposal, including the disposal of natural gas combustion products in the greenhouse facility.


2014 ◽  
Vol 6 (2) ◽  
pp. 115-119
Author(s):  
Tri Hoang

This paper introduces an energy-saving biomass stove. The principle of energy-saving biomass stove is gasification. It is a chemical process, transforms solid fuel into a gas mixture, called (CO + H2 + CH4) gas. Emission lines in the stove chimneys typically remain high temperatures around 90° to 120°C. The composition of the flue gas consists of combustion products of rice husk which are mainly CO2, CO, N2. A little volatile in the rice husk, which could not burn completely, residual oxygen and dust will fly in airflow. The amount of dust in the outlet gas is a combination of un-burnt amount of impurity and firewood, usually occupied impurity rate of 1 % by weight of dry husk. Outlet dust of rice husk furnace has a normal size from 500μm to 0.1 micron and a particle concentration ranges from 200-500 mg/m3. Gas emissions is created when using energy-saving stove and they will be used as the main raw material in combustion process Therefore the CO2 emission into the environment when using the stove will be reduced up to 95% of a commonly used stove. Bài báo giới thiệu một bếp tiết kiệm dùng năng lượng sinh khối. Bếp tiết kiệm năng lượng thực hiện nguyên lý khí hóa sinh khối. Đó là một quá trình hóa học, chuyển hóa các loại nhiên liệu dạng rắn thành một dạng hỗn hợp khí đốt, gọi là khí Gas (CO + H2 + CH4). Dòng khí thải ra ở ống khói của bếp thông thường có nhiệt độ vẫn còn cao khoảng 90° ~ 120°C. Thành phần của khói thải bao gồm các sản phẩm cháy của trấu, chủ yếu là các khí CO2, CO, N2, một ít các chất bốc trong trấu không kịp cháy hết, oxy dư và tro bụi bay theo dòng khí. Lượng bụi tro có trong khói thải chính là một phần của lượng không cháy hết và lượng tạp chất không cháy có trong củi, lượng tạp chất này thường chiếm tỷ lệ 1% trọng lượng trấu khô. Bụi trong khói thải lò đốt trấu thông thường có kích thước hạt từ 500μm tới 0,1μm, nồng độ dao động trong khoảng từ 200-500 mg/m3. Lượng khí thải được sinh ra khi sử dụng bếp tiết kiệm năng lượng, sẽ được dùng làm nguyên liệu đốt cháy chính của quá trình đó. Do đó lượng khí CO2 thải ra môi trường khi sử dụng bếp tiết kiệm sẽ được giảm xuống 95 % so với sử dụng bếp thường.


Sign in / Sign up

Export Citation Format

Share Document