scholarly journals ANALYSIS OF THE SOCIO-PSYCHOLOGICAL DETERMINANT OF THE PSYCHOEMOTIONAL SPHERE OF WOMEN IN THE POSTNATAL PERIOD

2019 ◽  
Vol 24 (1(49)) ◽  
Author(s):  
М. О. Галицька
2014 ◽  
Vol 1 (1) ◽  
pp. 42-46
Author(s):  
L. Yuskiv ◽  
V. Vlizlo

Aim. To investigate the vitamin D status in highly productive cows during winter housing period and effect of cholecalciferol by various ways of vitamin D 3 injection to cows in last days of gestation and after calving. Methods. Enzyme-linked immunoassay, spectrophotometry. Results. It has been stated that intramuscular injection of cholecalciferol into cows caused increase of the vitamin D 3 active metabolite – 25-OHD 3 , calcium, phosphorus and magnesium levels together with decrease of alkaline phosphatase level in pre- and post-natal periods. Oral supplementation makes little infl uence on the studied blood parameters of cows. Conclusions. Extrabuccal administration and oral supplementation of cholecalciferol in winter housing period to high-yield cows in the last days of gestation and after calving is accompanied by increased levels of its metabolites and their effect on mineral metabolism in the postnatal period. The nature of these changes depends on the mode of vitamin D administration and the physiological state of the cows.


The eff ect of the non-opiate analog of leu-enkephalin (peptide NALE: Phe – D – Ala – Gly – Phe – Leu – Arg) on the reactive oxygen species generation in the heart of albino rats in the early postnatal period was studied. Peptide NALE was administered intraperitoneally in the dose of 100 μ/kg daily from 2 to 6 days of life. Reactive oxygen species generation was assessed by chemiluminescence in the heart homogenates of 7-day-old animals. Decreasing of reactive oxygen species generation nearly by 30 % and an increasing in antioxidant system activity by the 20-27 %, compared with the control parameters, were found. The antioxidant eff ect of peptide NALE is associated with the presence of the amino acid Arg in the structure of the peptide. An analogue of NALE peptide, devoid of Arg (peptide Phe – D – Ala – Gly – Phe – Leu – Gly), had a signifi cant lower antioxidant eff ect. The NO-synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME) in the dose 50 mg/kg, administered with NALE peptide, reduced the severity of the NALE antioxidant eff ect. The results of the study suggest that the pronounced antioxidant eff ect of NALE peptide in the heart of albino rats, at least in part, is due to the interaction with the nitric oxide system.


2019 ◽  
Vol 15 (1) ◽  
pp. 4-9
Author(s):  
G. Csaba

Hormonal imprinting takes place at the first encounter between the developing receptor and its target hormone and the encounter determines the receptor's binding capacity for life. In the critical period of development, when the window for imprinting is open, the receptor can be misdirected by related hormones, synthetic hormones, and industrial or communal endocrine disruptors which cause faulty hormonal imprinting with life-long consequences. Considering these facts, the hormonal imprinting is a functional teratogen provoking alterations in the perinatal (early postnatal) period. One single encounter with a low dose of the imprinter in the critical developmental period is enough for the formation of faulty imprinting, which is manifested later, in adult age. This has been justified in the immune system, in sexuality, in animal behavior and brain neurotransmitters etc. by animal experiments and human observations. This review points to the faulty hormonal imprinting in the case of bones (skeleton), by single or repeated treatments. The imprinting is an epigenetic alteration which is inherited to the progeny generations. From clinical aspect, the faulty imprinting can have a role in the pathological development of the bones as well, as in the risk of osteoporotic fractures, etc.


Author(s):  
Parul Christian ◽  
Emily R Smith ◽  
Sun Eun Lee ◽  
Ashley J Vargas ◽  
Andrew A Bremer ◽  
...  

ABSTRACT Critical advancement is needed in the study of human milk as a biological system that intersects and interacts with myriad internal (maternal biology) and external (diet, environment, infections) factors and its plethora of influences on the developing infant. Human-milk composition and its resulting biological function is more than the sum of its parts. Our failure to fully understand this biology in a large part contributes to why the duration of exclusive breastfeeding remains an unsettled science (if not policy). Our current understanding of human-milk composition and its individual components and their functions fails to fully recognize the importance of the chronobiology and systems biology of human milk in the context of milk synthesis, optimal timing and duration of feeding, and period of lactation. The overly simplistic, but common, approach to analyzing single, mostly nutritive components of human milk is insufficient to understand the contribution of either individual components or the matrix within which they exist to both maternal and child health. There is a need for a shift in the conceptual approach to studying human milk to improve strategies and interventions to support better lactation, breastfeeding, and the full range of infant feeding practices, particularly for women and infants living in undernourished and infectious environments. Recent technological advances have led to a rising movement towards advancing the science of human-milk biology. Herein, we describe the rationale and critical need for unveiling the multifunctionality of the various nutritional, nonnutritional, immune, and biological signaling pathways of the components in human milk that drive system development and maturation, growth, and development in the very early postnatal period of life. We provide a vision and conceptual framework for a research strategy and agenda to change the field of human-milk biology with implications for global policy, innovation, and interventions.


2021 ◽  
Vol 22 (10) ◽  
pp. 5113
Author(s):  
Jae-Yeon Kim ◽  
Mercedes F. Paredes

A prolonged developmental timeline for GABA (γ-aminobutyric acid)-expressing inhibitory neurons (GABAergic interneurons) is an amplified trait in larger, gyrencephalic animals. In several species, the generation, migration, and maturation of interneurons take place over several months, in some cases persisting after birth. The late integration of GABAergic interneurons occurs in a region-specific pattern, especially during the early postnatal period. These changes can contribute to the formation of functional connectivity and plasticity, especially in the cortical regions responsible for higher cognitive tasks. In this review, we discuss GABAergic interneuron development in the late gestational and postnatal forebrain. We propose the protracted development of interneurons at each stage (neurogenesis, neuronal migration, and network integration), as a mechanism for increased complexity and cognitive flexibility in larger, gyrencephalic brains. This developmental feature of interneurons also provides an avenue for environmental influences to shape neural circuit formation.


Nutrients ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 205
Author(s):  
William Yakah ◽  
David Ramiro-Cortijo ◽  
Pratibha Singh ◽  
Joanne Brown ◽  
Barbara Stoll ◽  
...  

Multicomponent lipid emulsions are available for critical care of preterm infants. We sought to determine the impact of different lipid emulsions on early priming of the host and its response to an acute stimulus. Pigs delivered 7d preterm (n = 59) were randomized to receive different lipid emulsions for 11 days: 100% soybean oil (SO), mixed oil emulsion (SO, medium chain olive oil and fish oil) including 15% fish oil (MO15), or 100% fish oil (FO100). On day 11, pigs received an 8-h continuous intravenous infusion of either lipopolysaccharide (LPS—lyophilized Escherichia coli) or saline. Plasma was collected for fatty acid, oxylipin, metabolomic, and cytokine analyses. At day 11, plasma omega-3 fatty acid levels in the FO100 groups showed the highest increase in eicosapentaenoic acid, EPA (0.1 ± 0.0 to 9.7 ± 1.9, p < 0.001), docosahexaenoic acid, DHA (day 0 = 2.5 ± 0.7 to 13.6 ± 2.9, p < 0.001), EPA and DHA-derived oxylipins, and sphingomyelin metabolites. In the SO group, levels of cytokine IL1β increased at the first hour of LPS infusion (296.6 ± 308 pg/mL) but was undetectable in MO15, FO100, or in the animals receiving saline instead of LPS. Pigs in the SO group showed a significant increase in arachidonic acid (AA)-derived prostaglandins and thromboxanes in the first hour (p < 0.05). No significant changes in oxylipins were observed with either fish-oil containing group during LPS infusion. Host priming with soybean oil in the early postnatal period preserves a higher AA:DHA ratio and the ability to acutely respond to an external stimulus. In contrast, fish-oil containing lipid emulsions increase DHA, exacerbate a deficit in AA, and limit the initial LPS-induced inflammatory responses in preterm pigs.


Sign in / Sign up

Export Citation Format

Share Document