EXAMINATION OF THERMOPHYSICAL CHARACTERISTICS OF A HEAT-PROTECTIVE MATERIAL BASED ON FIBERGLASS DURING DESTRUCTION

Author(s):  
D.Ya. Barinov ◽  
◽  
S.Yu. Shorstov ◽  
M.G. Razmahov ◽  
A.I. Gulyaev ◽  
...  

When designing advanced samples of aviation and rocket and space technology, during the operation of which the temperature on the surface of the material can exceed the temperature of destruction, it is important to have an understanding of the values of thermophysical properties. The work investigates the thermophysical properties of fiberglass in the initial state and after the binder is burned out in a muffle furnace. The temperature dependences of thermal effects, heat capacity, thermal diffusivity and thermal conductivity were determined, density was measured, and thermogravimetric analysis was carried out. Using a stereomicroscope, the microstructure of the lateral cut of the samples was examined and its evolution was determined during the burning of the binder.

Author(s):  
Геннадий Александрович Фролов ◽  
Юрий Игоревич Евдокименко ◽  
Вячеслав Михайлович Кисель ◽  
Ирина Александровна Гусарова

An experimental determination of the temperature dependences of the specific heat capacity and the thermal conductivity coefficient of the multifunctional coating MFP-92 at temperatures up to 1000 °C has been carried out. At temperatures up to 450 °C, an IT-c-400 device was used to determine the specific heat capacity. IT-l-400 device was used for the determination of thermal conductivity. At higher temperatures, the determination of the thermophysical characteristics (TPC) was carried out by solving the inverse problem of thermal conductivity (IPT) in a flat plate under conditions of one-sided heating in a muffle furnace. Composite material MFP-92 is a multilayer structure with upper layers based on silica fabric and chromophosphate binder and lower layers based on mullite-silica fabric and aluminosilicate binder. The TPC of the layers also differ from each other, and, accordingly, the properties of this material as a whole can be determined only in the form of their effective values, averaged in one way or another over the thickness of the coating. In addition, during heating, the material undergoes significant physicochemical transformations associated with the thermal destruction of its components, manifested in the form of abundant gas release, and a decrease in the density of the material, which significantly changes its TPC and determines its dependence on the heating rate. Therefore, studies of the thermophysical characteristics of the MFP-92 material were carried out with several (2-5) consecutive heating cycles. It was found that in four heating cycles of the MFP-92 material up to 450 °C for 75 minutes when measuring the specific heat on the IT-c-400 device, its temperature dependence significantly changes qualitatively and quantitatively. With furnace heating to 1000 °C, the temperature dependences of the TPC of the material, determined in the first and second heating cycles, have a different form, but change insignificantly in subsequent heating cycles. This makes it possible to ascribe to the MFP-92 material a set of two sets of TPC related to its initial (phase A) and annealed after heating to 1000 °C (phase B) states. Using the obtained TPС of phase A (including the magnitude of the thermal effect of irreversible endothermic phase transition at 100 °C) and phase B, good agreement was obtained between the calculated and experimental temperature fields in the samples under furnace heating conditions.


2020 ◽  
Vol 992 ◽  
pp. 41-47
Author(s):  
I.L. Shubin ◽  
V.A. Dorf ◽  
R.O. Krasnovskij ◽  
D.E. Kapustin ◽  
P.S. Sultygova

The number of researches on steel fiber reinforced concrete (SFRC) fire resistance is insignificant. For the calculation of building structures for fire resistance, it is necessary to use the thermophysical characteristics of concrete: thermal conductivity, heat capacity and thermal diffusivity. The physicomechanical characteristics of SFRC depend on the volumetric content of the fiber in it. This paper presents the results of studies of thermophysical properties of SFRC. The studied SFRC had a high-strength self-compacting cement-sand matrix and a different percentage of fiber content (from 0 to 6%). The experiments were carried out for SFRC with steel wavy fiber 15 mm long and 0.3 mm in diameter. As a result of experimental studies, it was discovered that with an increase in the volumetric content of the fiber, a decrease in the values of heat flow, thermal conductivity and thermal diffusivity coefficients, specific heat capacity is observed and the thermal resistance of SFRC increases.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Ľuboš Krišťák ◽  
Rastislav Igaz ◽  
Ivan Ružiak

The results of using the EDPS (extended dynamic plane source) method to determine thermophysical properties of solid wood of coniferous trees growing in Slovakia with 0% and 12% equilibrium moisture content are presented in the paper. Solid wood of two different tree species: Norway spruce (Picea abies L.) and Scots pine (Pinus sylvestris L.) was used in the research. The research was carried out independently in three anatomical planes. Coefficients of thermal conductivity, thermal diffusivity, and specific heat capacity were determined following the research. Comparing the research results to the values determined by other authors and already published models to calculate individual parameters, the fact that the data gathered using the EDPS method can be accepted in case of all studied thermophysical properties can be stated.


2020 ◽  
Vol 10 (01n02) ◽  
pp. 2060019
Author(s):  
Sidek Khasbulatov ◽  
Suleiman Kallaev ◽  
Haji Gadjiev ◽  
Zairbek Omarov ◽  
Abumuslim Bakmaev ◽  
...  

The paper presents the results of a comprehensive study of the thermophysical properties (thermal conductivity, thermal diffusivity, heat capacity) of high-temperature multiferroic BiFeO3 modified with rare-earth elements (REEs) (La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Lu). The regularities of the formation of the mentioned characteristics were established. The assumptions about the nature of the observed phenomena were suggested.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6218
Author(s):  
Tsogtbilegt Boldoo ◽  
Jeonggyun Ham ◽  
Honghyun Cho

The thermophysical properties of water-based Co0.5Zn0.5Fe2O4 magnetic nanofluid were investigated experimentally. Consequently, the viscosities of 0.25 wt% and 1 wt% Co0.5Zn0.5Fe2O4 nanofluid were 1.03 mPa∙s and 1.13 mPa∙s, each greater than that of the 20 °C base fluid (water), which were increased by 7.3% and 17.7%, respectively. The Co0.5Zn0.5Fe2O4 nanofluid thermal conductivity enhanced from 0.605 and 0.618 to 0.654 and 0.693 W/m·°C at concentrations of 0.25 wt% and 1 wt%, respectively, when the temperature increased from 20 to 50 °C. The maximum thermal conductivity of the Co0.5Zn0.5Fe2O4 nanofluid was 0.693 W/m·°C at a concentration of 1 wt% and a temperature of 50 °C. Furthermore, following a solar exposure of 120 min, the photothermal energy conversion efficiency of 0.25 wt%, 0.5 wt%, 0.75 wt%, and 1 wt% Co0.5Zn0.5Fe2O4 nanofluids increased by 4.8%, 5.6%, 7.1%, and 4.1%, respectively, more than that of water.


Author(s):  
Brandon W. Olson ◽  
Ali Fahham

The popular 3ω method of measuring thermophysical properties of solids is adapted for the simultaneous measurement of thermal conductivity and heat capacity in both liquids and gases. This technique is experimentally simple and has a lower susceptibility to random experimental noise, bulk fluid motion, radiation losses, and non-linear effects than other transient hot wire measurement methods. The compactness of the 3ω hotwire allows it to be used with different fluids in a variety of circumstances with very little specialized experimental equipment. Both the experimental setup and theoretical model are detailed. Experimental 3ω measurements were made in a variety of common fluids (air, water, and mineral oil) using commercially drawn 10μm platinum and 5μm tungsten hot wires which serve as both heating element and resistance thermometer. Measurements taken over a range of frequencies are numerically reduced to provide both thermal conductivity and heat capacity information. Experimental measurements and the corresponding analytical model are presented in terms of impedance or thermal resistance; a more physically meaningful and intuitive basis of comparison. Fluid properties are determined by curve-fitting an analytical model to experimental data using a least-squares approach. This technique allows both thermal conductivity and heat capacity (or thermal diffusivity) to be uniquely determined from a single measurement sequence.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012135
Author(s):  
D A Samoshkin ◽  
A Sh Agazhanov ◽  
S V Stankus

Abstract The heat capacity and the thermal diffusivity of NP2 brand nickel were investigated in the temperature interval 296–1000…1375 K of the solid-state, including the region of the magnetic phase transformation. Measurements were carried out on samples from one initial ingot by laser flash technique and method of differential scanning calorimetry using LFA-427 and DSC 404 F1 setups, respectively. The thermal conductivity was calculated based on the measured thermophysical properties. The estimated errors of the obtained results were 2–4%, 3–5%, and 2–3% for thermal diffusivity, thermal conductivity, and heat capacity, respectively. For investigated thermophysical properties the fitting equations and the reference table have been received.


RSC Advances ◽  
2021 ◽  
Vol 11 (62) ◽  
pp. 39177-39187
Author(s):  
Alexey Kurus ◽  
Alexander Yelisseyev ◽  
Sergei Lobanov ◽  
Pavel Plyusnin ◽  
Maxim Molokeev ◽  
...  

LiGaS2 crystals are grown, and the high thermal conductivity is established. Analysis of temperature dependences of various properties reveals side phases, and isotropic points in birefringence, photo-, thermo-, and pyroluminescence.


2021 ◽  
pp. 44-48
Author(s):  
S.I. Bananyarli ◽  

The termophisical properties, namely, the temperature dependence of thermal conductivity, thermal resistance and heat capacity of the allays compositions (2Bi2O3∙B2O3)100-x (2Bi2O3∙3GeO2)x in the (300–600) K temperature range have ligated been invest. An increase in thermal conductivity χ(T) above 500 K is probably associated with the softening of alloys and the presence of blurred phase transitions, which are accompanied by partial breaking of chemical bonds. It was revealed that the heat capacity in alloys of the compositions (2Bi2O3∙B2O3)100-x (2Bi2O3∙3GeO2)x increases with an increase in the GeO2 concentration. In the studied samples, that showed their own disorder during solidification, the thermal conductivity is strongly reduced due to the enhancement of the anharmonicity of phonon – phonon interactions. İn turn a small "disorder" introduced by defects due to the difference in masses is not noticeable against the background of the huge "disorder" inherent in oxide substances


Author(s):  
B. W. Zhao ◽  
Y. Zhao ◽  
H. Liu ◽  
Y. Q. Li ◽  
K. X. Duan ◽  
...  

Soil thermophysical properties are the key factors affecting the internal heat balance of soil. In this paper, biochars (BC300, BC500 and BC700) were produced with wheat straw at the temperatures of 300, 500 and 700°, respectively. The effects of biochar amendment at the rates of 0%, 1%, 3%, and 5% on the thermophysical properties (thermal conductivity, heat capacity, and thermal diffusivity) of a loessial soil were investigated with and without water content respectively. Although the bulk density of soil significantly decreased with biochar amendment, due to enhancing soil porosity and organic matter content, the thermophysical properties of soil did not change largely with biochar amendment rate and pyrolysis temperature. Water content exhibited significant effects on the thermophysical properties of soils added with biochars, where the thermal conductivity and heat capacity of soil were linearly proportional to water content, the thermal diffusivity initially increased and then decreased with the increase of water content. In the meanwhile, there was no significant correlation between the biochar amendment rate or pyrolysis temperature and thermophysical properties. The results show that water content should be mainly concerned as a factor when the internal heat balance of loess soil is evaluated, even though the soil is amended with biochar.


Sign in / Sign up

Export Citation Format

Share Document