scholarly journals Prevalence of antimicrobial resistance in Gram-negative clinical isolates from a major secondary hospital in Kuwait: a retrospective descriptive study

GERMS ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 498-511
Author(s):  
Walid. Q Alali ◽  
Wadha AlFouzan ◽  
Rita Dhar
1995 ◽  
Vol 7 (6) ◽  
pp. 509-514 ◽  
Author(s):  
T. El-Karsh ◽  
A.F. Tawfik ◽  
F. AL-Shammary ◽  
S. AL-Salah ◽  
A.M. Kambal ◽  
...  

Diseases ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 15
Author(s):  
Ram Shankar Prasad Sah ◽  
Binod Dhungel ◽  
Binod Kumar Yadav ◽  
Nabaraj Adhikari ◽  
Upendra Thapa Shrestha ◽  
...  

Background: Antimicrobial resistance (AMR) among Gram-negative pathogens, predominantly ESBL-producing clinical isolates, are increasing worldwide. The main aim of this study was to determine the prevalence of ESBL-producing clinical isolates, their antibiogram, and the frequency of ESBL genes (blaTEM and blaCTX-M) in the clinical samples from patients. Methods: A total of 1065 clinical specimens from patients suspected of heart infections were collected between February and August 2019. Bacterial isolates were identified on colony morphology and biochemical properties. Thus, obtained clinical isolates were screened for antimicrobial susceptibility testing (AST) using modified Kirby–Bauer disk diffusion method, while ESBL producers were identified by using a combination disk diffusion method. ESBL positive isolates were further assessed using conventional polymerase chain reaction (PCR) to detect the ESBL genes blaTEM and blaCTX-M. Results: Out of 1065 clinical specimens, 17.8% (190/1065) showed bacterial growth. Among 190 bacterial isolates, 57.4% (109/190) were Gram-negative bacteria. Among 109 Gram-negative bacteria, 40.3% (44/109) were E. coli, and 30.2% (33/109) were K. pneumoniae. In AST, 57.7% (n = 63) Gram-negative bacterial isolates were resistant to ampicillin and 47.7% (n = 52) were resistant to nalidixic acid. Over half of the isolates (51.3%; 56/109) were multidrug resistant (MDR). Of 44 E. coli, 27.3% (12/44) were ESBL producers. Among ESBL producer E. coli isolates, 58.4% (7/12) tested positive for the blaCTX-M gene and 41.6% (5/12) tested positive for the blaTEM gene. Conclusion: Half of the Gram-negative bacteria in our study were MDR. Routine identification of an infectious agent followed by AST is critical to optimize the treatment and prevent antimicrobial resistance.


2021 ◽  
Vol 3 (5) ◽  
pp. 9-13
Author(s):  
Babatunde Odetoyin ◽  
Oluwaseun Adewole

Extended spectrum β-lactamases (ESBLs) have emerged as important mechanisms of antimicrobial resistance to beta-lactam drugs in hospitals, thereby limiting the available treatment options for infections caused by these microorganisms. The objectives of this study were to determine the prevalence of ESBL production among clinical isolates of Gram-negative bacilli from Obafemi Awolowo University Teaching Hospitals Complex, Ile-Ife, Nigeria as part of the global efforts to provide information for the containment of the spread of antimicrobial resistance. This is a laboratory-based study of 186 consecutive non-duplicate Gram-negative bacilli (GNB) isolated from diverse clinical samples at the Microbiology laboratory of the hospital after standard aerobic cultures. The isolates were identified by conventional biochemical test scheme and commercial GNB API 20E identification kit. Antimicrobial susceptibility testing (AST) of each isolate was determined by the disk diffusion technique. Isolates presumptively identified as ESBL producers from the AST assay were confirmed by the combination disks method. Escherichia coli (n=43; 23.1%) predominated among the organisms, followed by Enterobacter spp (n=23; 12.4%) and Klebsiella spp (n=22; 11.8%). Most of the organisms (95.7%) were resistant to tetracycline and ampicillin, but the least resistance (4.3%) was exhibited to imipenem. Fifty-eight (31.2%) isolates were ESBL producers with a preponderance of E. coli (n=15; 25.9%). The ESBL producers were commonly isolated from urine samples (n=31; 53.4%), and were significantly more resistant to levofloxacin, ciprofloxacin, nalidixic acid, gentamicin, augmentin, cefepime, ceftriaxone, ceftazidime and cefotaxime (p<0.05). This study has highlighted the therapeutic implications of the presence of EBSL in clinical isolates which was depicted by their multi-drug resistance phenotypes, thus emphasizing the need for continuous surveillance of bacterial resistance, institution of antimicrobial resistance stewardship in our hospital and regular screening of ESBLs in clinical isolates to prevent treatment failure.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S858-S858
Author(s):  
Monica Maria Rojas Rojas ◽  
Catalina López ◽  
Jaime Ruiz ◽  
Jacquleine Pavía ◽  
Jose Oñate ◽  
...  

Abstract Background The Study for Monitoring Antimicrobial Resistance Trends (SMART) is a worldwide initiative to monitor in vitro susceptibility of clinical Gram-negative isolates to several antimicrobial agents. Surveillance initiatives are essential to provide real-world evidence to support local guidelines development. Colombia has participated since 2012 with isolates from complicated intrabdominal infections (cIAI), complicated urinary tract infections (cUTI) and respiratory tract infections (RTI). This study describes resistant patterns of Escherichia coli (Eco), Klebsiella pneumoniae (Kpn) and Pseudomonas aeruginosa (Pae) clinical isolates collected in Colombian hospitals in a 2 years period (2017–2018). Methods Isolates from patients with cIAI, cUTI and RTI were collected. Identification confirmation was done in central laboratory. Minimum inhibitory concentrations (MIC) were performed by broth microdilution and interpreted according to 2018 CLSI guidelines, same criteria for Extended-spectrum β-lactamase (ESBL) classification. The antimicrobial activity was evaluated for aztreonam (ATM), ceftolozane/tazobactam (C/T), ceftazidime (CAZ), colistin (COL), ertapenem (ETP), cefepime (FEP), imipenem (IMP), meropenem (MEM) and piperacillin–tazobactam (TZP). Results During 2017–2018, 1492 isolates were collected. The main organism was Eco (51%) followed by Kpn (29%) and Pae (20%). In vitro susceptibility activity is presented in Table 1. COL, C/T, ETP, MEM and IPM exhibited over 95% susceptibility in Eco. ESBL prevalence was 18% for Eco (53/314) and 22% for Kpn (36/165). COL and C/T were the most active agents against Pae isolates. For Kpn, MIC50/90 values were: MEM (0.12 / 8), C/T (0.5 / 8) and for TZP (8 / > 64), meanwhile for Pae were MEM (0.5 / 32), C/T (0.5 / 32) and for TZP (8 / > 64). Conclusion Continued antimicrobial resistance surveillance initiatives are critical to guide the empiric treatments decision in a multidrug resistance era. This study shows that Ceftolozane/Tazobactam, MEM and COL have the best susceptibility profile against Eco, Kpn and Pae of cIAI, cUTI and RTI cases in Colombia. The C/T susceptibility rates and low MIC distribution provide evidence to support its use as a non-carbapenem therapeutic alternative for Gram-negative infections. Disclosures All authors: No reported disclosures.


mBio ◽  
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Tae Hwan Kim ◽  
Xun Tao ◽  
Bartolome Moya ◽  
Yuanyuan Jiao ◽  
Kari B. Basso ◽  
...  

ABSTRACT Poor penetration through the outer membrane (OM) of Gram-negative bacteria is a major barrier of antibiotic development. While β-lactam antibiotics are commonly used against Klebsiella pneumoniae and Enterobacter cloacae, there are limited data on OM permeability especially in K. pneumoniae. Here, we developed a novel cassette assay, which can simultaneously quantify the OM permeability to five β-lactams in carbapenem-resistant K. pneumoniae and E. cloacae. Both clinical isolates harbored a blaKPC-2 and several other β-lactamases. The OM permeability of each antibiotic was studied separately (“discrete assay”) and simultaneously (“cassette assay”) by determining the degradation of extracellular β-lactam concentrations via multiplex liquid chromatography-tandem mass spectrometry analyses. Our K. pneumoniae isolate was polymyxin resistant, whereas the E. cloacae was polymyxin susceptible. Imipenem penetrated the OM at least 7-fold faster than meropenem for both isolates. Imipenem penetrated E. cloacae at least 258-fold faster and K. pneumoniae 150-fold faster compared to aztreonam, cefepime, and ceftazidime. For our β-lactams, OM permeability was substantially higher in the E. cloacae compared to the K. pneumoniae isolate (except for aztreonam). This correlated with a higher OmpC porin production in E. cloacae, as determined by proteomics. The cassette and discrete assays showed comparable results, suggesting limited or no competition during influx through OM porins. This cassette assay allowed us, for the first time, to efficiently quantify the OM permeability of multiple β-lactams in carbapenem-resistant K. pneumoniae and E. cloacae. Characterizing the OM permeability presents a critical contribution to combating the antimicrobial resistance crisis and enables us to rationally optimize the use of β-lactam antibiotics. IMPORTANCE Antimicrobial resistance is causing a global human health crisis and is affecting all antibiotic classes. While β-lactams have been commonly used against susceptible isolates of Klebsiella pneumoniae and Enterobacter cloacae, carbapenem-resistant isolates are spreading worldwide and pose substantial clinical challenges. Rapid penetration of β-lactams leads to high drug concentrations at their periplasmic target sites, allowing β-lactams to more completely inactivate their target receptors. Despite this, there are limited tangible data on the permeability of β-lactams through the outer membranes of many Gram-negative pathogens. This study presents a novel, cassette assay, which can simultaneously characterize the permeability of five β-lactams in multidrug-resistant clinical isolates. We show that carbapenems, and especially imipenem, penetrate the outer membrane of K. pneumoniae and E. cloacae substantially faster than noncarbapenem β-lactams. The ability to efficiently characterize the outer membrane permeability is critical to optimize the use of β-lactams and combat carbapenem-resistant isolates.


Sign in / Sign up

Export Citation Format

Share Document