scholarly journals The Influence of Technological Parameters on Durability of Products from ABS Plastic at Ultrasonic Welding

Author(s):  
S.S. Volkov ◽  
S.A. Korolev ◽  
D.S. Rozanov

An ultrasonic welding method for round-shaped products made from ABS plastic is described in this paper. This method can eliminate roughness and waviness on the contact surface between the planimetric waveguide and the welded part, increase heat removal from the surface of the welded part in the subwaveguide zone and improve the efficiency of ultrasonic welding as well as the strength and quality of the welded joint. It is shown that a mushroom-shaped waveguide is the optimal choice for planimetric ultrasonic welding of ABS parts of the fan wheel type with regard to the uniformity of the oscillation amplitude distribution along the perimeter of the waveguide’s working end face. The optimal form of the waveguide’s working end face is defined that entails fixing the connecting parts relative to the waveguide’s axis along their diameter. It is established that at a certain combination of the ultrasonic welding modes for ABS plastic the rate of deformation at large welding pressures can turn out to be higher than at small pressures. This is caused by the competition of three factors: temperatures, static welding pressure and concentration of energy on the welded surfaces. It is determined that for welding ABS plastic the so-called soft modes of ultrasonic welding with small static welding pressure and oscillation amplitude of the waveguide’s end face should be used. In this case welding occurs only due to the distribution of microroughness, without dents from the waveguide on the surface of the welded material. Optimal welding parameters for ABS plastic are determined.

Author(s):  
S.S. Volkov ◽  
A.L. Remizov ◽  
A.S. Pankratov

This paper presents a mechanism of formation of a hard-to-weld polycarbonate joint by ultrasonic welding. The method utilizes internal and external friction occurring in the welded joint area on abutting surfaces due to shear vibrations of the end of the upper part relative to the lower part. A layer of the heated welded material is formed, localized by thickness, in which predominant absorption of the ultrasonic vibrations occurs, which allows one to obtain high-quality and durable welded joints without significant deformation due to the concentration of thermal energy in the welding zone. The effect of independent welding pressure on the strength of the welded joint of polycarbonate is considered. A new method of ultrasonic welding under the conditions of independent pressure is proposed. The method consists of dividing the static welding pressure into two components: the pressure of the acoustic contact in the zone of contact of the waveguide with the product, and the welding pressure that compresses the welded products, with the latter component being lower than the former. In order to obtain high-quality welded joints made of polycarbonate and to prevent displacement of the welded edges during the welding process relative to each other, a special preparation of the welded edges is developed, which allows one part to be moved vertically relative to the other during the welding process. It is established that the quality of welding depends on the speed of movement and the angle of cutting the edges.


2020 ◽  
Vol 14 (3) ◽  
pp. 369-374
Author(s):  
Željko Bilić ◽  
Ivan Samardžić ◽  
Nedjeljko Mišina ◽  
Katarina Stoić

As already known, no proper control or process control parameter which absolutely guarantees a high level quality of joints made by electro-resistive welding has been established so far, especially when all possible parameters are taken into account during the welding process. Due to the process of butt-welding being very short-lived, ensuring quality of the joints is a difficult and under-researched problem. The application of non-destructive testing methods to the control interface joints is also not reliable. Therefore, further research in this area should concentrate on studying the influence of basic welding parameters, and calculating their direct or indirect impact can serve to achieve a highquality welded joint with for practice sufficient accuracy.


2011 ◽  
Vol 57 (Special Issue) ◽  
pp. S50-S56 ◽  
Author(s):  
P. Čičo ◽  
D. Kalincová ◽  
M. Kotus

This paper is focused on the analysis of the welding technology influence on the microstructure production and quality of the welded joint. Steel of class STN 41 1375 was selected for the experiment, the samples were welded by arc welding including two methods: a manual one by coated electrode and gas metal arc welding method. Macro and microstructural analyses of the experimental welded joints confirmed that the welding parameters affected the welded joint structure in terms of the grain size and character of the structural phase.


2015 ◽  
Vol 818 ◽  
pp. 229-232
Author(s):  
Ján Viňáš ◽  
Luboš Kaščák

Resistance spot welding has been widely used in sheet fabrication for several decades. Development of new materials leads to innovation of welding processes. The paper describes the principle of innovative welding method known as Delta Spot and evaluates the properties of Delta Spot joints made by combination of galvanized steel sheets H220PD (a0 = 0.9 mm) and TRIP 40/70+Z100MBO (a0 = 0.77 mm). The quality of welded joints was evaluated by tensile test and metallographic analysis. The influence of the welding parameters on the structure of welded joint was observed too. The properties of Delta Spot joint were compared to the properties of standard resistance spot welds.


2013 ◽  
Vol 658 ◽  
pp. 202-208 ◽  
Author(s):  
Dong Sam Park ◽  
Ho Su Jang ◽  
Woo Yeol Park

This paper gives a description of an experimental study on the ultrasonic welding of metals. In ultrasonic metal welding, high frequency vibrations are combined with pressure to join two materials together quickly and securely, without generating large amount of heat. Horn, a key part of ultrasonic welding machine, should be designed very accurately to get the natural frequencies and vibration mode required. In this study, a horn is designed and developed for ultrasonic welding of Cu sheets. The tensile strength of welded parts is investigated for evaluation of weldability. Experimental parameters of welding test is set as follows; welding time 0.4s ~ 3.4sec. and vibration amplitude 40%, 60%, 80% and welding pressure 1.5bar, 2.0bar, 2.5bar. Samples are Cu sheets of 0.1mm thickness. Experimental results showed that the tensile strength increase as welding parameters increase, but when welding pressure is excessive, the tensile strength decrease due to fracture of the Cu sheets caused by over-welding. These results could be successfully applied for ultrasonic metal welding in various fields of manufacturing industry.


2021 ◽  
pp. 004051752098812
Author(s):  
Muktar Seid Hussen ◽  
Yordan Kostadinov Kyosev ◽  
Kathrin Pietsch ◽  
Stefan Rothe ◽  
Abera Kechi

In the research project presented in this paper, the effects of welding width, pressure force, power, and speed of ultrasonic welding parameters on hydrostatic pressure resistance were examined. A flexible and lightweight PVC-coated hybrid textile material with uniform thickness was used for weather protection purposes. Three main welding parameters at three different levels were selected based on the preliminary test results involving welding widths of 6 and 12 mm. A lapped type of seam was applied for ultrasonic welding and conventional joining techniques. A conventionally sewn zigzag seam was produced using three main factors at two different levels according to the application area. To avoid seam permeability, the conventional seam was sealed with tape by means of hot-air tape welding and subsequently investigated regarding its hydrostatic pressure resistance. The hydrostatic pressure resistance value of the conventional seam was then compared with ultrasonic weld seams of 6 and 12 mm welding width, and its parametric influence on the quality of the seam was analyzed. The result shows that the ultrasonic weld seam with a 12 mm welding width provided a higher hydrostatic pressure resistance than the 6 mm welding width and the conventionally sewn seam. Statistical analyses were also carried out to prove the significant effect of welding process parameters on hydrostatic pressure resistance, whereby the obtained results were statistically significant. A suitable nonlinear numerical model was also developed to predict the hydrostatic pressure resistance.


2013 ◽  
Vol 581 ◽  
pp. 287-291 ◽  
Author(s):  
Michal Hatala ◽  
Imrich Orlovský ◽  
Svetlana Radchenko

Welding is the most widely used technology of creating permanent joints in the engineering industry. Correct setting of welding parameters predisposes quality weld joint without unwanted defects. Article deals with the influence of fusion welding parameters on the final quality welds. Describes the thermal cycle of welding and its effects on the weld joint and theoretically describes used methods MIG / MAG. Core of the article is devoted to the description of the experiment and on the technological parameters of the welding process. Quality of weld is tested visually, metallographic and microhardness measurement of the weld joints.


2020 ◽  
Vol 14 (54) ◽  
pp. 153-168
Author(s):  
Ismail Chekalil ◽  
Abdelkader Miloudi ◽  
Marie-Pierre Planche ◽  
Abdelkader Ghazi

Friction stir welding (FSW) is an extremely complex process because it depends on the intrinsic and extrinsic factors of the material under consideration. The purpose of the present work is to formulate a set of recommendations concerning the choice of the different factors that are likely to influence the quality of the FSW joint and to find a mathematical model that allows predicting the mechanical behavior of the junction. An experimental design was therefore used to highlight the effect of the welding parameters on the behavior of the aluminum alloy  FS-Welded joint. The most influential parameters were shown to be in the order of rotational speed, feed rate and tool tilt angle. The study of the interactions between these different parameters made it possible to establish a number of combinations of the different factors for the purpose of achieving the quality optimization of the FSW joint by obtaining a tensile strength of the weld joint equal to  of that of the base metal.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1257
Author(s):  
Alexey Dorokhov ◽  
Alexander Aksenov ◽  
Alexey Sibirev ◽  
Nikolay Sazonov ◽  
Maxim Mosyakov ◽  
...  

The roller and sieve machines most commonly used in Russia for the post-harvest processing of root and tuber crops and onions have a number of disadvantages, the main one being a decrease in the quality of sorting due to the contamination of working bodies, which increases the quantity of losses during sorting and storage. To obtain high-quality competitive production, it is necessary to combine a number of technological operations during the sorting process, such as dividing the material into classes and fractions by quality and size, as well as identifying and removing damaged products. In order to improve the quality of sorting of root tubers and onions by size, it is necessary to ensure the development of an automatic control system for operating and technological parameters, the use of which will eliminate manual sorting on bulkhead tables in post-harvest processing. To fulfill these conditions, the developed automatic control system must have the ability to identify the material on the sorting surface, taking into account external damage and ensuring the automatic removal of impurities. In this study, the highest sorting accuracy of tubers (of more than 91%) was achieved with a forward speed of 1.2 m/s for the conveyor of the sorting table, with damage to 2.2% of the tubers, which meets the agrotechnical requirements for post-harvest processing. This feature distinguishes the developed device from similar ones.


Author(s):  
Sanjeev Verma ◽  
Vinod Kumar

Aluminium and its alloys are lightweight, corrosion-resistant, affordable and high-strength material and find wide applications in shipbuilding, automotive, constructions, aerospace and other industrial sectors. In applications like aerospace, marine and automotive industries, there is a need to join components made of different aluminium alloys, viz. AA6061 and AA5083. In this study friction stir welding (FSW) is used to join dissimilar plates made of AA6061-T6 and AA5083-O. The effect of varying tool pin profile, tool rotation speed, tool feed rate and tilt angle of the tool has been investigated on the tensile strength and percentage elongation of the welded joints. Box-Behkan design, with four input parameters and three levels of each parameter has been employed to decide the set of experimental runs. The regression models have been developed to investigate the influence of welding variables on the tensile strength and elongation of the welded joint. It is revealed that with the increase in welding parameters like tool rpm, tool feed rate and tilt angle of the tool, both the mechanical properties increase, reach a maximum level, followed by a decrease with further increase in the value of parameters. Amongst different types of tool pin profiles used, the FSW tool having straight cylindrical (SC) pin profile is found to yield the maximum strength and elongation of the welded joint for different combinations of welding parameters. Multiple response optimization indicates that the maximum UTS (135.83 MPa) and TE (4.35%) are obtained for the welded joint fabricated using FSW tool having SC pin profile, tilted at 1.11° and operating at tool speed and feed rate of 1568 rpm and 39.53 mm/min., respectively.


Sign in / Sign up

Export Citation Format

Share Document