Autonomic Trust Management in Cloud-Based and Highly Dynamic IOT Applications

Author(s):  
Suneth Namal ◽  
Hasindu Gamaarachchi ◽  
Gyu Myoung Lee ◽  
Tai-Won Um

In this paper, we propose an autonomic trust management framework for cloud based and highly dynamic Internet of Things (IoT) applications and services. IoT is creating a world where physical objects are seamlessly integrated in order to provide advanced and intelligent services for humanbeings in their day-to-day life style. Therefore, trust on IoT devices plays an important role in IoT based services and applications. Cloud computing has been changing the way how provides are looking into these issues. Many studies have proposed different techniques to address trust management although non of them addresses autonomic trust management in cloud based highly dynamic IoT systems. To our understanding, IoT cloud ecosystems help to solve many of these issues while enhancing robustness and scalability. On this basis, we came up with an autonomic trust management framework based on MAPE-K feedback control loop to evaluate the level of trust. Finally, we presents the results that verify the effectiveness of this framework.

Author(s):  
Mamata Rath ◽  
Bibudhendu Pati

Adoption of Internet of Things (IoT) and Cloud of Things (CoT) in the current developing technology era are expected to be more and more invasive, making them important mechanism of the future Internet-based communication systems. Cloud of Things and Internet of Things (IoT) are two emerging as well as diversified advanced domains that are diversified in current technological scenario. Paradigm where Cloud and IoT are merged together is foreseen as disruptive and as an enabler of a large number of application scenarios. Due to the adoption of the Cloud and IoT paradigm a number of applications are gaining important technical attention. In the future, it is going to be more complicated a setup to handle security in technology. Information till now will severely get changed and it will be very tough to keep up with varying technology. Organisations will have to repeatedly switch over to new skill-based technology with respect to higher expenditure. Latest tools, methods and enough expertise are highly essential to control threats and vulnerability to computing systems. Keeping in view the integration of Cloud computing and IoT in the new domain of Cloud of things, the said article provides an up-to-date eminence of Cloud-based IoT applications and Cloud of Things with a focus on their security and application-oriented challenges. These challenges are then synthesized in detail to present a technical survey on various issues related to IoT security, concerns, adopted mechanisms and their positive security assurance using Cloud of Things.


Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6441 ◽  
Author(s):  
Salam Hamdan ◽  
Moussa Ayyash ◽  
Sufyan Almajali

The rapid growth of the Internet of Things (IoT) applications and their interference with our daily life tasks have led to a large number of IoT devices and enormous sizes of IoT-generated data. The resources of IoT devices are limited; therefore, the processing and storing IoT data in these devices are inefficient. Traditional cloud-computing resources are used to partially handle some of the IoT resource-limitation issues; however, using the resources in cloud centers leads to other issues, such as latency in time-critical IoT applications. Therefore, edge-cloud-computing technology has recently evolved. This technology allows for data processing and storage at the edge of the network. This paper studies, in-depth, edge-computing architectures for IoT (ECAs-IoT), and then classifies them according to different factors such as data placement, orchestration services, security, and big data. Besides, the paper studies each architecture in depth and compares them according to various features. Additionally, ECAs-IoT is mapped according to two existing IoT layered models, which helps in identifying the capabilities, features, and gaps of every architecture. Moreover, the paper presents the most important limitations of existing ECAs-IoT and recommends solutions to them. Furthermore, this survey details the IoT applications in the edge-computing domain. Lastly, the paper recommends four different scenarios for using ECAs-IoT by IoT applications.


2021 ◽  
Vol 9 (2) ◽  
Author(s):  
Feroz Khan A.B ◽  
◽  
Anandharaj G ◽  

The smart devices connected on the internet turn to be the internet of things, which connect other objects or devices through unique identifiers with the capability of transferring and receiving the information over the internet. There are numerous applications in different areas such as healthcare, home automation, transportation, military, agriculture, and still so many sectors that incorporate cutting-edge technologies of communication, networking, cloud computing, sensing, and actuation. With this huge increase in the number of connected devices, a strong security mechanism is required to protect the IoT devices. Hence, it is required to focus on the challenges and issues of IoT enabled applications to safeguard the entire network from the outside invasion. This paper discusses some of the challenges in building IoT applications, a detailed study of the existing security protocols, and its issues, and the potential of the IoT.


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2664 ◽  
Author(s):  
Luis Belem Pacheco ◽  
Eduardo Pelinson Alchieri ◽  
Priscila Mendez Barreto

The use of Internet of Things (IoT) is rapidly growing and a huge amount of data is being generated by IoT devices. Cloud computing is a natural candidate to handle this data since it has enough power and capacity to process, store and control data access. Moreover, this approach brings several benefits to the IoT, such as the aggregation of all IoT data in a common place and the use of cloud services to consume this data and provide useful applications. However, enforcing user privacy when sending sensitive information to the cloud is a challenge. This work presents and evaluates an architecture to provide privacy in the integration of IoT and cloud computing. The proposed architecture, called PROTeCt—Privacy aRquitecture for integratiOn of internet of Things and Cloud computing, improves user privacy by implementing privacy enforcement at the IoT devices instead of at the gateway, as is usually done. Consequently, the proposed approach improves both system security and fault tolerance, since it removes the single point of failure (gateway). The proposed architecture is evaluated through an analytical analysis and simulations with severely constrained devices, where delay and energy consumption are evaluated and compared to other architectures. The obtained results show the practical feasibility of the proposed solutions and demonstrate that the overheads introduced in the IoT devices are worthwhile considering the increased level of privacy and security.


Internet of Things(IoT) is playing a pivotal role in our daily life as well as in various fields like Health, agriculture, industries etc. In the go, the data in the various IoT applications will be easily available to the physical dominion and thus the process of ensuringthe security of the data will be a major concern. For the extensive implementation of the numerous applications of IoT , the data security is a critical component. In our work, we have developed an encryption technique to secure the data of IoT. With the help of Merkle-Hellman encryption the data collected from the various IoT devices are first of all encrypted and then the secret message is generated with the help of Elliptic Curve Cryptography.


Author(s):  
Clinton Fernandes ◽  
Vijay Sivaraman

This article examines the implications of selected aspects of the Telecommunications (Interception and Access) Amendment (Data Retention) Act 2015, which was passed by the Australian Parliament in March 2015. It shows how the new law has strengthened protections for privacy. However, focusing on the investigatory implications, it shows how the law provides a tactical advantage to investigators who pursue whistleblowers and investigative journalists. The article exposes an apparent discrepancy in the way ‘journalist’ is defined across different pieces of legislation. It argues that although legislators’ interest has been overwhelmingly focused on communications data, the explosion of data generated by the so-called Internet-of-Things (IoT) is as important or more. It shows how the sensors in selected IoT devices lead to a loss of user control and will enable non-stop, involuntary and ubiquitous monitoring of individuals. It suggests that the law will need to be amended further once legislators and investigators’ knowledge of the potential of IoT increases. 


Author(s):  
Saravanan K ◽  
P. Srinivasan

Cloud IoT has evolved from the convergence of Cloud computing with Internet of Things (IoT). The networked devices in the IoT world grow exponentially in the distributed computing paradigm and thus require the power of the Cloud to access and share computing and storage for these devices. Cloud offers scalable on-demand services to the IoT devices for effective communication and knowledge sharing. It alleviates the computational load of IoT, which makes the devices smarter. This chapter explores the different IoT services offered by the Cloud as well as application domains that are benefited by the Cloud IoT. The challenges on offloading the IoT computation into the Cloud are also discussed.


2019 ◽  
Vol 2019 ◽  
pp. 1-19 ◽  
Author(s):  
Zeeshan Ali Khan ◽  
Peter Herrmann

Many Internet of Things (IoT) systems run on tiny connected devices that have to deal with severe processor and energy restrictions. Often, the limited processing resources do not allow the use of standard security mechanisms on the nodes, making IoT applications quite vulnerable to different types of attacks. This holds particularly for intrusion detection systems (IDS) that are usually too resource-heavy to be handled by small IoT devices. Thus, many IoT systems are not sufficiently protected against typical network attacks like Denial-of-Service (DoS) and routing attacks. On the other side, IDSs have already been successfully used in adjacent network types like Mobile Ad hoc Networks (MANET), Wireless Sensor Networks (WSN), and Cyber-Physical Systems (CPS) which, in part, face limitations similar to those of IoT applications. Moreover, there is research work ongoing that promises IDSs that may better fit to the limitations of IoT devices. In this article, we will give an overview about IDSs suited for IoT networks. Besides looking on approaches developed particularly for IoT, we introduce also work for the three similar network types mentioned above and discuss if they are also suitable for IoT systems. In addition, we present some suggestions for future research work that could be useful to make IoT networks more secure.


Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1925
Author(s):  
Soe Ye Yint Tun ◽  
Samaneh Madanian ◽  
Dave Parry

The elderly population is increasing globally, putting more pressure on aged care and public health systems. To address this issue and help increase the independence of older people, different digital technologies, including the Internet of things (IoT), can play an important role. Although there has been an increase in the number of studies in this field, most of them concentrate on IoT applications in elderly care from a technology perspective, with very little contribution from the clinical side. Therefore, this paper aims to investigate and identify the available IoT applications and their clinical utility for common diseases in elderly people. The results of this study could be useful for information technology professionals in developing and understanding the clinical requirements for IoT applications in healthcare for older people. Clinicians will also be informed about the clinical possibilities of using IoT devices in this area. Based on our findings, future research should focus on enhancing the clinical utility of current IoT applications in different settings and on developing new applications to support practitioners and older people.


Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6846
Author(s):  
Ngoc-Thanh Dinh ◽  
Young-Han Kim

Existing caching mechanisms considers content objects individually without considering the semantic correlation among content objects. We argue that this approach can be inefficient in Internet of Things due to the highly redundant nature of IoT device deployments and the data accuracy tolerance of IoT applications. In many IoT applications, an approximate answer is acceptable. Therefore, a cache of an information object having a high semantic correlation with the requested information object can be used instead of a cache of the exact requested information object. In this case, caching both of the information objects can be inefficient and redundant. This paper proposes a caching retrieval scheme which considers the semantic information correlation of information objects of nodes for cache retrieval. We illustrate the benefits of considering the semantic information correlation in caching by studying IoT data caching at the edge. Our experiments and analysis show that semantic correlated caching can significantly improve the efficiency, cache hit, and reduce the resource consumption of IoT devices.


Sign in / Sign up

Export Citation Format

Share Document