Chitosan: An elicitor and antimicrobial Bio-resource in plant protection

2018 ◽  
Author(s):  
Akansha Singh ◽  
Kalpana Gairola, ◽  
Vinod Upadhyay ◽  
J. Kumar

Pesticide resistance and environment threat due to injudicious use of chemical pesticides for disease management employs the alteration in management practices. Chitosan, a deacetylated chitin derivative, behaves like a general elicitor, inducing a non-host resistance, and prime the plants for systemic acquired resistance in addition to this Chitosan has high antimicrobial activity against a wide range of pathogenic and spoilage microorganisms, including fungi and bacteria. The use of chitosan in agriculture and in food systems should be based on sufficient knowledge of the complex mechanisms of its elicitor and antimicrobial mode of action. In this article we a number of studies on the investigation of chitosan antimicrobial and resistance inducing properties and application of them in agriculture sector have been summarized.

2012 ◽  
Vol 2 (1) ◽  
pp. 48-53
Author(s):  
Thanh Toan Le ◽  
Van Dien Luong ◽  
Thuy Nhien Thi Ngo ◽  
Van Kim Pham

Most rice protection methods have currently used toxic chemicals to control pathogens and pests, which leads to environment pollution. Systemic acquired resistance (SAR) taking advantage of natural defence reaction of plants could be proposed as an alternative, ecologically friendly ap-proach for plant protection. Its application into rice production could minimize the chemicals quantity used, and could contribute to the decrease of environmental pollution and the development of sustainable agriculture. The research was conducted to select the best effective chemical and method to improve the health of rice plants infected by grassy stunt disease in net-house of Cantho University. SAR chemicals were used at very low concentrations (in mM). Results showed that the height of rice plants treated with SAR chemicals was higher than that of plants untreated. Besides, the number of diseased plant was reduced and the ratio of firm grain and yield increased when plants were applied by SAR. Among them, oxalic acid was the best systemic acquired resistance. With oxalic acid, seed soaking was better than seed coating in systemic acquired resistance against rice grassy stunt disease. Hầu hết các phương pháp sản xuất lúa hiện nay đều sử dụng các hóa chất độc hại trong việc phòng trừ bệnh và côn trùng gây hại, nên dẫn đến ô nhiễm môi trường. Kích thích tính kháng lưu dẫn giúp kích hoạt cơ chế tự nhiênkháng bệnh của cây có thể là giải pháp bảo vệ thực vật thay thế an toàn với môi trường. Việc ứng dụng tiến bộ này vào trong sản xuất lúa có thể làm giảm lượng hóa chất sử dụng, đóng góp vào việc giảm thiểu ô nhiễmmôi trường và sự phát triển của một nền nông nghiệp bền vững. Nghiên cứu đã được thực hiện tại nhà lưới trường Đại học Cần Thơ để tuyển chọn hóa chất và phương pháp sử dụng hóa chất để tăng cường sức khỏe giúp cây lúa vượt qua bệnh vàng lùn. Hóa chất kích kháng được sử dụng ở một nồng độ rất thấp (đơn vị là mM). Kết quả cho thấy chiều cao cây lúa khi xử lý chất kích kháng tốt hơn so đối chứng không xử lý. Bên cạnh đó, số cây lúa nhiễm bệnh giảm, tỉ lệ hạt chắc và năng suất tăng khi cây lúa được xử lý với chất kích kháng. Trong số các chất kích kháng đã sử dụng, acid oxalic cho hiệu quả vượt trội. Với chất acid oxalic, phương pháp ngâm hạt cho hiệuquả kích kháng tốt hơn phương pháp áo hạt.


2019 ◽  
Vol 4 (2) ◽  
pp. 5
Author(s):  
Muhammad Ramzan ◽  
Unsar Naeem-Ullah ◽  
Syed Haroon Masood Bokhari ◽  
Shafia Saba

Pakistan is a place where only pesticides is considered as an effective source for control of pests and diseases, and we are using these deliberately by involving wide range of pesticides. Majority of chemicals are used in agriculture as data suggests that about 49399 million metric tons of pesticides had been used only in agriculture sector in 2010 in the country. Use of pesticides in other fields such as public health, fisheries, forestry and food industry is not included in the data. Though pesticides are useful in managing pest populations but these have adverse effects on humans, animals and ecosystems. The current work exhibits the effects of pesticides on human health in the country. Acute poisoning is one of the key issues resulted by unsafe handling and storage of pesticides in on-farm and off-farm premises in developing economies. From various areas in the country, pesticides are reported to be used as tool for suicide by teen agers due to easy access. According to department of Plant Protection (Karachi), total of 200 workers get affected showing low enzyme activity in their blood. In Multan, an adverse situation was observed as elevated levels (87.5 %) of acetylcholinesteras (AchE) activity was recorded in female cotton pickers as compared to males which have low (36 %) AchE activity because cotton is picked mostly by women in Pakistan. The aim of this work is to sum-up the weaknesses in practicing / implementing current policies and legislations for safe handling, storage and judicious use of pesticides. The acquired knowledge will later be used in making and improving the existing regulations for the subject


2021 ◽  
Vol 7 (12) ◽  
pp. 1004
Author(s):  
Lakshmipriya Perincherry ◽  
Natalia Witaszak ◽  
Monika Urbaniak ◽  
Agnieszka Waśkiewicz ◽  
Łukasz Stępień

Fusarium species present ubiquitously in the environment are capable of infecting a wide range of plant species. They produce several mycotoxins targeted to weaken the host plant. While infecting some resistant plants, the host can alter the expression of toxin-related genes and accumulate no/very low amounts of mycotoxins. The ability of the host plant to modulate the biosynthesis of these toxins is entirely depending on the secondary metabolites produced by the plant, often as a part of systemic acquired resistance (SAR). A major role plays in the family of metabolites called phenyl propanoids, consisting of thousands of natural products, synthesized from the phenylalanine or tyrosine amino acids through a cascade of enzymatic reactions. They are also famous for inhibiting or limiting infection through their antioxidant characteristics. The current study was aimed at identifying the differentially expressed secondary metabolites in resistant (Sokolik) and susceptible (Santana) cultivars of pea (Pisum sativum L.) and understanding their roles in the growth and mycotoxin biosynthesis of two different Fusarium species. Although metabolites such as coumarin, spermidine, p-coumaric acid, isoorientin, and quercetin reduced the growth of the pathogen, a higher level of p-coumaric acid was found to enhance the growth of F. proliferatum strain PEA1. It was also noticeable that the growth of the pathogen did not depend on their ability to produce mycotoxins, as all the metabolites were able to highly inhibit the biosynthesis of fumonisin B1 and beauvericin.


HortScience ◽  
2015 ◽  
Vol 50 (5) ◽  
pp. 666-672 ◽  
Author(s):  
Fengge Hao ◽  
Lirong Wang ◽  
Ke Cao ◽  
Xinwei Wang ◽  
Weichao Fang ◽  
...  

Crown gall disease caused by Agrobacterium tumefaciens affects a wide range of horticultural plants, and has no effective treatment. During the evaluation of crown gall resistance of peach germplasm resources, we observed enhanced resistance to subsequent invasion that was activated by virulence of A. tumefaciens in two peach cultivars. To further verify the phenotype observed in field experiments, systemic acquired resistance (SAR)-related salicylic acid (SA) and PR1 genes were investigated. The levels of SA were elevated in two cultivars, and these high levels were maintained for 35 days postinoculation. Compared with mock-inoculated controls, eight of the 22 candidate PpPR1 genes in A. tumefaciens-inoculated samples were significantly upregulated and three were downregulated in response to inoculation with A. tumefaciens. These data suggested that SA-induced SAR was activated in two peach cultivars by virulent A. tumefaciens infection. In addition, the eight induced PpPR1 genes can be used as molecular markers in defense studies in peach.


2015 ◽  
Vol 7 (2) ◽  
pp. 719-724
Author(s):  
S. Phurailatpam ◽  
J. N. Sharma

To study the mechanism of resistance developed in three different cultivars of apple viz; Starking Delicious, Tydeman’s Early Worcester and Granny Smith against Marssonina coronaria , after treatment with SAR inducing chemicals salicylic acid (SA), dipotassium phosphate (K2HPO4) and acibenzolar-S-methyl (ASM) contents of total phenol, reducing sugar, non -reducing sugar and activities of polyphenol oxidase (PPO), and peroxidase (POD) were assayed at three sampling periods (48,72 and 96 hours). The results revealed that SA treated leaves of cultivar Granny Smith recorded highest amount of phenol (49,53.66,57.33 mg/g), reducing sugar (16,16.33,17.66 mg/g), non-reducing sugar (2.90,3.13,3.53 mg/g) content, peroxidase (30,29.33,36) and polyphenol (26,30,34) activity in all the sampling intervals followed ASM and K2HPO4 treated plants. When compared among the cultivars maximum production was observed highest in cultivar Granny Smith which was followed by cultivars Tydeman’s Early Worcester and Starking Delicious. The present study showed that application of systemic acquired resistance (SAR) chemical can induce resistance in apple plants against Marssonina blotch caused by M. coronaria showing strong correlation between the ability of elicitors to enhanced plant disease resistance and elicitation of defence related enzymes. Thus, using SAR chemicals to induce resistance to apple against Marssonina blotch caused by M. coronaria, may provide a practical supplement to an environmentally friendly disease management when it is combined with appropriate integrated disease management practices.


2021 ◽  
Vol 12 ◽  
Author(s):  
Qingfeng Zhou ◽  
Qi Meng ◽  
Xiaomin Tan ◽  
Wei Ding ◽  
Kang Ma ◽  
...  

Systemic acquired resistance (SAR) in plants is a defense response that provides resistance against a wide range of pathogens at the whole-plant level following primary infection. Although the molecular mechanisms of SAR have been extensively studied in recent years, the role of phosphorylation that occurs in systemic leaves of SAR-induced plants is poorly understood. We used a data-independent acquisition (DIA) phosphoproteomics platform based on high-resolution mass spectrometry in an Arabidopsis thaliana model to identify phosphoproteins related to SAR establishment. A total of 8011 phosphorylation sites from 3234 proteins were identified in systemic leaves of Pseudomonas syringae pv. maculicola ES4326 (Psm ES4326) and mock locally inoculated plants. A total of 859 significantly changed phosphoproteins from 1119 significantly changed phosphopeptides were detected in systemic leaves of Psm ES4326 locally inoculated plants, including numerous transcription factors and kinases. A variety of defense response-related proteins were found to be differentially phosphorylated in systemic leaves of Psm ES4326 locally inoculated leaves, suggesting that these proteins may be functionally involved in SAR through phosphorylation or dephosphorylation. Significantly changed phosphoproteins were enriched mainly in categories related to response to abscisic acid, regulation of stomatal movement, plant–pathogen interaction, MAPK signaling pathway, purine metabolism, photosynthesis-antenna proteins, and flavonoid biosynthesis. A total of 28 proteins were regulated at both protein and phosphorylation levels during SAR. RT-qPCR analysis revealed that changes in phosphorylation levels of proteins during SAR did not result from changes in transcript abundance. This study provides comprehensive details of key phosphoproteins associated with SAR, which will facilitate further research on the molecular mechanisms of SAR.


2019 ◽  
Vol 20 (7) ◽  
pp. 1598 ◽  
Author(s):  
Patryk Frąckowiak ◽  
Henryk Pospieszny ◽  
Marcin Smiglak ◽  
Aleksandra Obrępalska-Stęplowska

Systemic acquired resistance (SAR) induction is one of the primary defence mechanisms of plants against a broad range of pathogens. It can be induced by infectious agents or by synthetic molecules, such as benzo(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH). SAR induction is associated with increases in salicylic acid (SA) accumulation and expression of defence marker genes (e.g., phenylalanine ammonia-lyase (PAL), the pathogenesis-related (PR) protein family, and non-expressor of PR genes (NPR1)). Various types of pathogens and pests induce plant responses by activating signalling pathways associated with SA, jasmonic acid (JA) and ethylene (ET). This work presents an analysis of the influence of BTH and its derivatives as resistance inducers in healthy and virus-infected plants by determining the expression levels of selected resistance markers associated with the SA, JA, and ET pathways. The phytotoxic effects of these compounds and their influence on the course of viral infection were also studied. Based on the results obtained, the best-performing BTH derivatives and their optimal concentration for plant performance were selected, and their mode of action was suggested. It was shown that application of BTH and its derivatives induces increased expression of marker genes of both the SA- and JA-mediated pathways.


Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1134
Author(s):  
Guangjin Li ◽  
Tong Chen ◽  
Zhanquan Zhang ◽  
Boqiang Li ◽  
Shiping Tian

Aquaporins (AQPs) are a class of small, membrane channel proteins present in a wide range of organisms. In addition to water, AQPs can facilitate the efficient and selective flux of various small solutes involved in numerous essential processes across membranes. A growing body of evidence now shows that AQPs are important regulators of plant-pathogen interaction, which ultimately lead to either plant immunity or pathogen pathogenicity. In plants, AQPs can mediate H2O2 transport across plasma membranes (PMs) and contribute to the activation of plant defenses by inducing pathogen-associated molecular pattern (PAMP)-triggered immunity and systemic acquired resistance (SAR), followed by downstream defense reactions. This involves the activation of conserved mitogen-activated protein kinase (MAPK) signaling cascades, the production of callose, the activation of NPR1 and PR genes, as well as the opening and closing of stomata. On the other hand, pathogens utilize aquaporins to mediate reactive oxygen species (ROS) signaling and regulate their normal growth, development, secondary or specialized metabolite production and pathogenicity. This review focuses on the roles of AQPs in plant immunity, pathogenicity, and communications during plant-pathogen interaction.


2019 ◽  
Vol 30 (6) ◽  
pp. 267-276 ◽  
Author(s):  
Dennis Ndolo ◽  
Elizabeth Njuguna ◽  
Charles Oluwaseun Adetunji ◽  
Chioma Harbor ◽  
Arielle Rowe ◽  
...  

Even though pesticides have greatly contributed to boosting agricultural productivity and farmer income over the years, there have been concerns about the safety of some of these pest control products. Besides, there has been a growing demand for good quality and safe food in the recent past – as reflected in the stringent regulations on pesticide residue levels in produce. Biopesticides in comparison with conventional synthetic chemical pesticides are usually less toxic, generally affect only the target pest and closely related organisms, are often effective in relatively small quantities and decompose faster, resulting in lower exposure. Consequently, over the last few years, biopesticides have attracted global attention as a safer pest control strategy for incorporation into Integrated Pest Management (IPM) programmes. Besides, in the last decade, adoption of IPM programmes has significantly enhanced pest management practices and, in some cases, reduced pesticide use, consequently reducing the rise in demand for synthetic chemical pesticides. Also, the development of new synthetic chemical pesticides has declined considerably in the recent past, as regulations have become tighter, with products being withdrawn from the market, resulting in a more limited choice of chemical solutions such that biopesticides have become a more feasible option. Many countries have also increasingly lowered chemical Maximum Residue Levels for agricultural imports which have made it increasingly necessary to explore pest control options which would ensure reduced reliance on the use of synthetic chemical pesticides. In this paper, avenues of addressing challenges to biopesticide research and development are evaluated by seeking the inputs of a wide range of stakeholders, building on a recent international workshop with biopesticides practitioners from across the globe. Prospects for biopesticide application are detailed using a case study on the fall armyworm (Spodoptera frugiperda) in Africa.


Sign in / Sign up

Export Citation Format

Share Document