Histochemical Distribution of Acetylcholinesterase in the Forebrain Nuclei of an Indian Non Catfish Channa punctatus

Author(s):  
Anurag Tripathi ◽  
Shri Prakash

Background: Acetylcholinesterase (AChE) is an enzyme belonging to hydrolase group which splits the acetylcholine in to choline and acetate. It is supposed to be a marker of cholinergic and cholinoceptive neurons. Acetylcholinesterase histochemisry has been done in a number of vertebrates but it is still obscure and scattered in fishes, particularly in Indian fishes. Methods: In the present study a modified histochemical technique has been employed to histochemically map the acetylcholinesterase containing neurons in the telencephalic and diencephalic nuclei of C. punctatus described by Hedreen, et al (1985).Result: Acetylchoinesterase is differentially expressed in the various prosencephalic centres and nuclei of the brain, thus its staining clearly demarcates these centres and nuclei based on varying enzyme intensity. Among the pallial nuclei of the forebrain, medial and dorsolateral nuclei showed intense enzyme activity while ventral dorsolateral nucleus and central nucleus showed moderate reaction. In contrast, most of the subpallial nuclei of the forebrain showed high intensity. Diencephalic nuclei of the forebrain exhibited mosaic pattern of enzyme distribution. 

2021 ◽  
Vol 7 (11) ◽  
pp. eaba1187
Author(s):  
Rina Baba ◽  
Satoru Matsuda ◽  
Yuuichi Arakawa ◽  
Ryuji Yamada ◽  
Noriko Suzuki ◽  
...  

Persistent epigenetic dysregulation may underlie the pathophysiology of neurodevelopmental disorders, such as autism spectrum disorder (ASD). Here, we show that the inhibition of lysine-specific demethylase 1 (LSD1) enzyme activity normalizes aberrant epigenetic control of gene expression in neurodevelopmental disorders. Maternal exposure to valproate or poly I:C caused sustained dysregulation of gene expression in the brain and ASD-like social and cognitive deficits after birth in rodents. Unexpectedly, a specific inhibitor of LSD1 enzyme activity, 5-((1R,2R)-2-((cyclopropylmethyl)amino)cyclopropyl)-N-(tetrahydro-2H-pyran-4-yl)thiophene-3-carboxamide hydrochloride (TAK-418), almost completely normalized the dysregulated gene expression in the brain and ameliorated some ASD-like behaviors in these models. The genes modulated by TAK-418 were almost completely different across the models and their ages. These results suggest that LSD1 enzyme activity may stabilize the aberrant epigenetic machinery in neurodevelopmental disorders, and the inhibition of LSD1 enzyme activity may be the master key to recover gene expression homeostasis. TAK-418 may benefit patients with neurodevelopmental disorders.


2021 ◽  
Vol 22 (4) ◽  
pp. 1539
Author(s):  
Paola De Sanctis ◽  
Giuseppe Filardo ◽  
Provvidenza Maria Abruzzo ◽  
Annalisa Astolfi ◽  
Alessandra Bolotta ◽  
...  

In a previous study, the whole transcriptome of the vastus lateralis muscle from sedentary elderly and from age-matched athletes with an exceptional record of high-intensity, life-long exercise training was compared—the two groups representing the two extremes on a physical activity scale. Exercise training enabled the skeletal muscle to counteract age-related sarcopenia by inducing a wide range of adaptations, sustained by the expression of protein-coding genes involved in energy handling, proteostasis, cytoskeletal organization, inflammation control, and cellular senescence. Building on the previous study, we examined here the network of non-coding RNAs participating in the orchestration of gene expression and identified differentially expressed micro- and long-non-coding RNAs and some of their possible targets and roles. Unsupervised hierarchical clustering analyses of all non-coding RNAs were able to discriminate between sedentary and trained individuals, regardless of the exercise typology. Validated targets of differentially expressed miRNA were grouped by KEGG analysis, which pointed to functional areas involved in cell cycle, cytoskeletal control, longevity, and many signaling pathways, including AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR), which had been shown to be pivotal in the modulation of the effects of high-intensity, life-long exercise training. The analysis of differentially expressed long-non-coding RNAs identified transcriptional networks, involving lncRNAs, miRNAs and mRNAs, affecting processes in line with the beneficial role of exercise training.


1967 ◽  
Vol 45 (6) ◽  
pp. 853-861 ◽  
Author(s):  
W. Thompson

The hydrolysis of monophosphoinositide by soluble extracts from rat brain is described. Diglyceride and inositol monophosphate are liberated along with a small amount of free fatty acids. Hydrolysis of the lipid is optimal at pH 5.4 in acetate buffer. The reaction is stimulated by calcium ions or by high concentration of monovalent cations and, to a less extent, by long-chain cationic amphipathic compounds. Enzyme activity is lost on dialysis of the brain extract and can be restored by diffusible factor(s). Some differences in the conditions for hydrolysis of mono- and tri-phosphoinositides are noted.


2006 ◽  
Vol 95 (3) ◽  
pp. 1926-1935 ◽  
Author(s):  
Liang-Fa Liu ◽  
Alan R. Palmer ◽  
Mark N. Wallace

In the auditory system, some ascending pathways preserve the precise timing information present in a temporal code of frequency. This can be measured by studying responses that are phase-locked to the stimulus waveform. At each stage along a pathway, there is a reduction in the upper frequency limit of the phase-locking and an increase in the steady-state latency. In the guinea pig, phase-locked responses to pure tones have been described at various levels from auditory nerve to neocortex but not in the inferior colliculus (IC). Therefore we made recordings from 161 single units in guinea pig IC. Of these single units, 68% (110/161) showed phase-locked responses. Cells that phase-locked were mainly located in the central nucleus but also occurred in the dorsal cortex and external nucleus. The upper limiting frequency of phase-locking varied greatly between units (80−1,034 Hz) and between anatomical divisions. The upper limits in the three divisions were central nucleus, >1,000 Hz; dorsal cortex, 700 Hz; external nucleus, 320 Hz. The mean latencies also varied and were central nucleus, 8.2 ± 2.8 (SD) ms; dorsal cortex, 17.2 ms; external nucleus, 13.3 ms. We conclude that many cells in the central nucleus receive direct inputs from the brain stem, whereas cells in the external and dorsal divisions receive input from other structures that may include the forebrain.


1950 ◽  
Vol s3-91 (15) ◽  
pp. 315-330
Author(s):  
FRANCES MACDONALD

1. A method is described for assessing the depth of ‘staining’ obtained with the acid phosphatase technique and a detailed scheme is given of the standard technique used. 2. It is concluded that the technique specifically demonstrates the activity of acid phosphatase, since ‘staining’ is abolished in the absence of substrate, in heated sections, and in the presence of fluoride. 3. An investigation has been carried out to determine the extent to which the reaction is affected by altering various stages in the technique. 4. The effect of formalin fixation on the reaction has been investigated. 5. It has been shown that sites in the rabbit medulla having an affinity for the reagents used in the technique differ from the sites at which a precipitate is deposited as a result of enzyme activity. 6. Evidence is presented suggesting that the technique may not demonstrate the true physiological localization of the enzyme. 7. It is suggested that the technique may be of value as a neurohistological method.


2021 ◽  
Author(s):  
Shahan Mamoor

Metastasis to the brain is a clinical problem in patients with breast cancer (1-3). Between the breast and the brain reside the secondary lymphoid organ, the lymph nodes. We mined published microarray data (4, 5) to compare primary and metastatic tumor transcriptomes for the discovery of genes associated with metastasis to the lymph nodes in humans with metastatic breast cancer. We found that teashirt zinc finger homeobox 3, TSHZ3, was among the genes whose expression was most different in the lymph node metastases of patients with metastatic breast cancer as compared to primary tumors of the breast. Analysis of a separate microarray dataset revealed that TSHZ3 was also differentially expressed in brain metastatic tissues. TSHZ3 mRNA was present at decreased quantities in lymph node metastases as compared to primary tumors of the breast. Importantly, expression of TSHZ3 in primary tumors of the breast was correlated with patient post-progression survival, in lymph node positive patients but not in lymph node negative patients. Modulation of TSHZ3 expression may be relevant to the biology by which tumor cells metastasize from the breast to the lymph nodes and the brain in humans with metastatic breast cancer.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jonghyuk Park ◽  
Jimmy Kim ◽  
Toshio Mikami

Regular exercise training induces mitochondrial biogenesis in the brain via activation of peroxisome proliferator-activated receptor gamma-coactivator 1α (PGC-1α). However, it remains unclear whether a single bout of exercise would increase mitochondrial biogenesis in the brain. Therefore, we first investigated whether mitochondrial biogenesis in the hippocampus is affected by a single bout of exercise in mice. A single bout of high-intensity exercise, but not low- or moderate-intensity, increased hippocampal PGC-1α mRNA and mitochondrial DNA (mtDNA) copy number at 12 and 48h. These results depended on exercise intensity, and blood lactate levels observed immediately after exercise. As lactate induces mitochondrial biogenesis in the brain, we examined the effects of acute lactate administration on blood and hippocampal extracellular lactate concentration by in vivo microdialysis. Intraperitoneal (I.P.) lactate injection increased hippocampal extracellular lactate concentration to the same as blood lactate level, promoting PGC-1α mRNA expression in the hippocampus. However, this was suppressed by administering UK5099, a lactate transporter inhibitor, before lactate injection. I.P. UK5099 administration did not affect running performance and blood lactate concentration immediately after exercise but attenuated exercise-induced hippocampal PGC-1α mRNA and mtDNA copy number. In addition, hippocampal monocarboxylate transporters (MCT)1, MCT2, and brain-derived neurotrophic factor (BDNF) mRNA expression, except MCT4, also increased after high-intensity exercise, which was abolished by UK5099 administration. Further, injection of 1,4-dideoxy-1,4-imino-D-arabinitol (glycogen phosphorylase inhibitor) into the hippocampus before high-intensity exercise suppressed glycogen consumption during exercise, but hippocampal lactate, PGC-1α, MCT1, and MCT2 mRNA concentrations were not altered after exercise. These results indicate that the increased blood lactate released from skeletal muscle may induce hippocampal mitochondrial biogenesis and BDNF expression by inducing MCT expression in mice, especially during short-term high-intensity exercise. Thus, a single bout of exercise above the lactate threshold could provide an effective strategy for increasing mitochondrial biogenesis in the hippocampus.


2021 ◽  
Author(s):  
Shahan Mamoor

Metastasis to the brain is a clinical problem in patients with breast cancer (1-3). Between the breast and the brain reside the secondary lymphoid organ, the lymph nodes. We mined published microarray data (4, 5) to compare primary and metastatic tumor transcriptomes for the discovery of genes associated with metastasis to the lymph nodes in humans with metastatic breast cancer. We found that transmembrane protein 98, TMEM98, was among the genes whose expression was most different in the lymph node metastases of patients with metastatic breast cancer as compared to primary tumors of the breast. Analysis of a separate microarray dataset revealed that TMEM98 was also differentially expressed in brain metastatic tissues. TMEM98 mRNA was present at decreased quantities in lymph node metastases as compared to primary tumors of the breast. Importantly, expression of TMEM98 in primary tumors of the breast was correlated with patient overall survival, in lymph node positive patients but not in lymph node negative patients. Modulation of TMEM98 expression may be relevant to the biology by which tumor cells metastasize from the breast to the lymph nodes and the brain in humans with metastatic breast cancer.


2021 ◽  
Author(s):  
Shahan Mamoor

Metastasis to the brain is a clinical problem in patients with breast cancer (1-3). Between the breast and the brain reside the secondary lymphoid organ, the lymph nodes. We mined published microarray data (4, 5) to compare primary and metastatic tumor transcriptomes for the discovery of genes associated with metastasis to the lymph nodes in humans with metastatic breast cancer. We found that cluster of differentiation 69, CD69, was among the genes whose expression was most different in the lymph node metastases of patients with metastatic breast cancer as compared to primary tumors of the breast. Analysis of a separate microarray dataset revealed that CD69 was also differentially expressed in brain metastatic tissues. CD69 mRNA was present at increased quantities in lymph node metastases as compared to primary tumors of the breast. Importantly, expression of CD69 in primary tumors of the breast was correlated with patient overall survival, more significantly in lymph node negative patients than in lymph node positive patients. Modulation of CD69 expression may be relevant to the biology by which tumor cells metastasize from the breast to the lymph nodes and the brain in humans with metastatic breast cancer.


Sign in / Sign up

Export Citation Format

Share Document