scholarly journals Machine learning model for automation of soil texture classification

Author(s):  
K. Radhika ◽  
D. Madhavi Latha

Abstract Soil formation is a long term process and diverse soils are formed in different localities due to various soil forming factors over the landscape. Soil classification plays critical role in various aspects of agricultural engineering. Physico-chemical parameters play an important role in soil classification. In this paper, we present a comprehensive classification model for soil texture classification by using Linear Discriminant Analysis (LDA). We took the Physico-chemical properties of the soil, which include soil moisture, temperature, electrical conductivity, pH, organic carbon, available nitrogen, available phosphorus and potassium as independent variables, while the soil type was taken as the dependent variable. Feature selection is employed using Boruta algorithm. The performance of the proposed classification model is evaluated and expressed in terms of overall accuracy and kappa coefficient. Results show that the average prediction accuracy and kappa coefficient of the proposed model are 96.3% and 0.944 respectively, indicating that the model can be used effectively for soil classification for a set of suitable dependent variables.

2020 ◽  
Vol 15 (3) ◽  
pp. 624-631
Author(s):  
Vijaya Kumar Kallushettihalli Mallappa ◽  
Vijaya Kumara

The present study was carried out to determine the periodic variation in physico-chemical characteristics of mangrove soil samples. The soil samples had been accrued from four distinctive places of Kundapura mangrove areas in three seasons, monsoon, pre-monsoon and post-monsoon. Soil analysis pertaining to various variables such as total Nitrogen, Phosphorus, Potassium, pH and Electrical conductivity. Soil pH is assorted from 3.84 to 6.66. Electrical conductivity is assorted from 0.02 dSm-1 to 9.60 dSm-1. Available nitrogen is assorted from 30.7 kg/ha to 323 kg/ha. Available phosphorus concentration has ranged between 1.37 kg/ha and 47.27 kg/ha. Available potassium is differed from 117.43 kg/ha to 537.63 kg/ha. The results confirmed variations in all of the analyzed parameters of the soils amassed from four stations.


Author(s):  
Gintaras JARAŠIŪNAS ◽  
Irena KINDERIENĖ

The objective of this study was to evaluate the impact of different land use systems on soil erosion rates, surface evolution processes and physico-chemical properties on a moraine hilly topography in Lithuania. The soil of the experimental site is Bathihypogleyi – Eutric Albeluvisols (abe–gld–w) whose texture is a sandy loam. After a 27-year use of different land conservation systems, three critical slope segments (slightly eroded, active erosion and accumulation) were formed. Soil physical properties of the soil texture and particle sizes distribution were examined. Chemical properties analysed for were soil ph, available phosphorus (P) and potassium (K), soil organic carbon (SOC) and total nitrogen (N). We estimated the variation in thickness of the soil Ap horizon and soil physico-chemical properties prone to a sustained erosion process. During the study period (2010–2012) water erosion occurred under the grain– grass and grass–grain crop rotations, at rates of 1.38 and 0.11 m3 ha–1 yr–1, respectively. Soil exhumed due to erosion from elevated positions accumulated in the slope bottom. As a result, topographic transfiguration of hills and changes in soil properties occurred. However, the accumulation segments of slopes had significantly higher silt/clay ratios and SOC content. In the active erosion segments a lighter soil texture and lower soil ph were recorded. Only long-term grassland completely stopped soil erosion effects; therefore geomorphologic change and degradation of hills was estimated there as minimal.


2015 ◽  
Vol 8 ◽  
pp. ASWR.S31924 ◽  
Author(s):  
Milan Cisty ◽  
Lubomir Celar ◽  
Peter Minaric

This study focuses on the reclassification of a soil texture system following a hybrid approach in which the conventional particle-size distribution (PSD) models are coupled with a random forest (RF) algorithm for achieving more generally applicable and precise outputs. The existing parametric PSD models that could be used for this purpose have various limitations; different models frequently show unequal degrees of precision in different soils or under different environments. The authors present in this article a novel ensemble modeling approach in which the existing PSD models are used as ensemble members. An improvement in precision was proved by better statistical indicators for the results obtained, and the article documents that the ensemble model worked better than any of its constituents (different existing parametric PSD models). This study is verified by using a soil dataset from Slovakia, which was originally labeled by a national texture classification system, which was then transformed to the USDA soil classification system. However, the methodology proposed could be used more generally, and the information provided is also applicable when dealing with the soil texture classification systems used in other countries.


2020 ◽  
Vol 24 (5) ◽  
pp. 2505-2526
Author(s):  
Mo Zhang ◽  
Wenjiao Shi ◽  
Ziwei Xu

Abstract. Soil texture and soil particle size fractions (PSFs) play an increasing role in physical, chemical, and hydrological processes. Many previous studies have used machine-learning and log-ratio transformation methods for soil texture classification and soil PSF interpolation to improve the prediction accuracy. However, few reports have systematically compared their performance with respect to both classification and interpolation. Here, five machine-learning models – K-nearest neighbour (KNN), multilayer perceptron neural network (MLP), random forest (RF), support vector machines (SVM), and extreme gradient boosting (XGB) – combined with the original data and three log-ratio transformation methods – additive log ratio (ALR), centred log ratio (CLR), and isometric log ratio (ILR) – were applied to evaluate soil texture and PSFs using both raw and log-ratio-transformed data from 640 soil samples in the Heihe River basin (HRB) in China. The results demonstrated that the log-ratio transformations decreased the skewness of soil PSF data. For soil texture classification, RF and XGB showed better performance with a higher overall accuracy and kappa coefficient. They were also recommended to evaluate the classification capacity of imbalanced data according to the area under the precision–recall curve (AUPRC). For soil PSF interpolation, RF delivered the best performance among five machine-learning models with the lowest root-mean-square error (RMSE; sand had a RMSE of 15.09 %, silt was 13.86 %, and clay was 6.31 %), mean absolute error (MAE; sand had a MAD of 10.65 %, silt was 9.99 %, and clay was 5.00 %), Aitchison distance (AD; 0.84), and standardized residual sum of squares (STRESS; 0.61), and the highest Spearman rank correlation coefficient (RCC; sand was 0.69, silt was 0.67, and clay was 0.69). STRESS was improved by using log-ratio methods, especially for CLR and ILR. Prediction maps from both direct and indirect classification were similar in the middle and upper reaches of the HRB. However, indirect classification maps using log-ratio-transformed data provided more detailed information in the lower reaches of the HRB. There was a pronounced improvement of 21.3 % in the kappa coefficient when using indirect methods for soil texture classification compared with direct methods. RF was recommended as the best strategy among the five machine-learning models, based on the accuracy evaluation of the soil PSF interpolation and soil texture classification, and ILR was recommended for component-wise machine-learning models without multivariate treatment, considering the constrained nature of compositional data. In addition, XGB was preferred over other models when the trade-off between the accuracy and runtime was considered. Our findings provide a reference for future works with respect to the spatial prediction of soil PSFs and texture using machine-learning models with skewed distributions of soil PSF data over a large area.


2020 ◽  
Vol 4 ◽  
pp. 239784732097125
Author(s):  
Chirag N Patel ◽  
Sivakumar Prasanth Kumar ◽  
Rakesh M Rawal ◽  
Manishkumar B Thaker ◽  
Himanshu A Pandya

Background: Bioinformatics and statistical analysis have been employed to develop a classification model to distinguish toxic and non-toxic molecules. Aims: The primary objective of this study is to enumerate the cut-off values of various physico-chemical (ligand-centric) and target interaction (receptor-centric) descriptors which forms the basis for classifying cardiotoxic and non-toxic molecules. We also sought correlation of molecular docking, absorption, distribution, metabolism, excretion, and toxicology (ADMET) parameters, Lipinski rules, physico-chemical parameters, etc. of human cardiotoxicity drugs. Methods: A training and test set of 91 compounds were applied to linear discriminant analysis (LDA) using 2D and 3D descriptors as discriminating variables representing various molecular modeling parameters to identify which function of descriptor type is responsible for cardiotoxicity. Internal validation was performed using the leave-one-out cross-validation methodology ensuing in good results, assuring the stability of the discriminant function (DF). Results: The values of the statistical parameters Fisher Discriminant Analysis (FDA) and Wilk’s λ for the DF showed reliable statistical significance, as long as the success rate in the prediction for both the training and the test set attained more than 93% accuracy, 87.50% sensitivity and 94.74% specificity. Conclusion: The predictive model was built using a hybrid approach using organ-specific targets for docking and ADMET properties for the FDA (Food and Drug Administration) approved and withdrawn drugs. Classifiers were developed by linear discriminant analysis and the cut-off was enumerated by receiver operating characteristic curve (ROC) analysis to achieve reliable specificity and sensitivity.


Author(s):  
Parashuram Chandravamshi ◽  
T. V. Jyothi ◽  
A. H. Kumar Naik ◽  
D. A. Sumana

Aim: To study the effect of tube well irrigation water on soil physico-chemical properties and available nutrients status of central dry zone of Karnataka, Hiriyur taluk, Chitradurga district. Place and Duration of Study: Aimangala, Hiriyur, Dharmapura and Javagondanahally hoblis of Hiriyur taluk, Chitradurga district from January, 2019 to September, 2019. Methodology:  Ninety-six soil samples using GPS from 0 - 22.5 cm depth were collected randomly representing Aimangala, Hiriyur, Dharmapura and Javagondanahally hoblis of Hiriyur taluk, Chitradurga district. The soil samples were analyzed in the laboratory for various physico-chemical parameters (pH and EC), organic carbon and available major (N, P2O5 and K2O) and micronutrients (Fe, Zn, Mn and Cu) status. Results and Conclusion:  The results revealed that the villages studied in different hoblis were saline to sodic in soil reaction, non-saline to saline, low to high in organic matter content, low to high in available nitrogen, low to high in available phosphorus and low to high in available potassium status and sufficiency in micronutrients viz., Cu, Fe and Mn and deficient in Zn in some of the villages.


Agriculture ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 371
Author(s):  
Yu Jin ◽  
Jiawei Guo ◽  
Huichun Ye ◽  
Jinling Zhao ◽  
Wenjiang Huang ◽  
...  

The remote sensing extraction of large areas of arecanut (Areca catechu L.) planting plays an important role in investigating the distribution of arecanut planting area and the subsequent adjustment and optimization of regional planting structures. Satellite imagery has previously been used to investigate and monitor the agricultural and forestry vegetation in Hainan. However, the monitoring accuracy is affected by the cloudy and rainy climate of this region, as well as the high level of land fragmentation. In this paper, we used PlanetScope imagery at a 3 m spatial resolution over the Hainan arecanut planting area to investigate the high-precision extraction of the arecanut planting distribution based on feature space optimization. First, spectral and textural feature variables were selected to form the initial feature space, followed by the implementation of the random forest algorithm to optimize the feature space. Arecanut planting area extraction models based on the support vector machine (SVM), BP neural network (BPNN), and random forest (RF) classification algorithms were then constructed. The overall classification accuracies of the SVM, BPNN, and RF models optimized by the RF features were determined as 74.82%, 83.67%, and 88.30%, with Kappa coefficients of 0.680, 0.795, and 0.853, respectively. The RF model with optimized features exhibited the highest overall classification accuracy and kappa coefficient. The overall accuracy of the SVM, BPNN, and RF models following feature optimization was improved by 3.90%, 7.77%, and 7.45%, respectively, compared with the corresponding unoptimized classification model. The kappa coefficient also improved. The results demonstrate the ability of PlanetScope satellite imagery to extract the planting distribution of arecanut. Furthermore, the RF is proven to effectively optimize the initial feature space, composed of spectral and textural feature variables, further improving the extraction accuracy of the arecanut planting distribution. This work can act as a theoretical and technical reference for the agricultural and forestry industries.


Agriculture ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 171
Author(s):  
Gaurav Mishra ◽  
Rosa Francaviglia

Northeast (NE) India is a typical tropical ecosystem with a luxuriant forest vegetation cover, but nowadays forests are under stress due to exploitation and land use changes, which are known to affect soil health and productivity. However, due to a scarcity of data, the influence of land uses and altitude on soil properties of this peculiar ecosystem is poorly quantified. This study presents the changes in soil properties in two districts of Nagaland (Mon and Zunheboto) in relation to land uses (forest, plantation, jhum and fallow jhum), altitude (<500 m, 500–1000 m, >1000 m) and soil texture (coarse, medium, fine). For this, a random soil sampling was performed in both the districts. Results indicated that soil organic carbon (SOC) stocks and available potassium (K) were significantly influenced by land uses in the Mon district, while in Zunheboto a significant difference was observed in available phosphorus (P) content. SOC stocks showed an increasing trend with elevation in both districts. The influence of altitude on P was significant and the maximum concentration was at lower elevations (<500 m). In Mon, soil texture significantly affected SOC stocks and the available N and P content. The variability in soil properties due to land uses, altitudinal gradients and textural classes can be better managed with the help of management options, which are still needed for this ecosystem.


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Songhe Chen ◽  
Rencai Gao ◽  
Xiaoling Xiang ◽  
Hongkun Yang ◽  
Hongliang Ma ◽  
...  

AbstractMicrobe-mediated ammonia oxidation is a key process in soil nitrogen cycle. However, the effect of maize straw mulching on the ammonia oxidizers in the alkaline purple soil remains largely unknown. A three-year positioning experiment was designed as follows: straw mulching measures as the main-plot treatment and three kinds of nitrogen application as the sub-plot treatment. We found the contents of soil organic carbon (SOC), total nitrogen (TN), available potassium (AK), available nitrogen (AN), available phosphorus (AP), and NH4+-N were increased after straw mulching and nitrogen application in alkaline purple soil, so did the amoA genes abundance of ammonia-oxidizing archaeal (AOA) and bacterial (AOB). Terminal restriction fragment length polymorphism (T-RFLP) analysis revealed that Thaumarchaeote (448-bp T-RF) was dominated the AOA communities, whereas Nitrosospira sp (111-bp T-RF) dominated the AOB communities. The community compositions of both AOA and AOB were altered by straw mulching and nitrogen application in alkaline purple soil, however, the AOB communities was more responsive than AOA communities to the straw mulching and nitrogen application. Further analysis indicated that SOC and AP were the main factors affecting the abundance and community compositions of AOA and AOB in alkaline purple soil. The present study reported that straw mulching and nitrogen strategies differently shape the soil ammonia oxidizers community structure and abundance, which should be considered when evaluating agricultural management strategies regarding their sustainability and soil quality.


2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Xiao Wang ◽  
Liuye Yao ◽  
Zhiyu Qian ◽  
Lidong Xing ◽  
Weitao Li ◽  
...  

As excessive crossed disparity is known to cause visual discomfort, this study aims to establish a classification model to discriminate excessive crossed disparity in stereoscopic viewing in combination with subjective assessment of visual discomfort. A stereo-visual evoked potentials (VEPs) experimental system was built up to obtain the VEPs evoked by stereoscopic stimulus with different disparities. Ten volunteers participated in this experiment, and forty VEP datasets in total were extracted when the viewers were under comfortable viewing conditions. Six features of VEPs from three electrodes at the occipital lobe were chosen, and the classification was established using the Fisher’s linear discriminant (FLD). Based on FLD results, the correct rate for determining the excessive crossed disparity was 70%, and it reached 80% for other stimuli. The study demonstrated cost-effective discriminant classification modelling to distinguish the stimulus with excessive crossed disparity which inclines to cause visual discomfort.


Sign in / Sign up

Export Citation Format

Share Document