scholarly journals Human Thermal Comfort Situation in the Goller (Lakes) District of Turkey

Author(s):  
Yuksel Guclu

Abstract In this study, the determination of the human thermal comfort situation in the Goller District (in the Mediterranean Region) of Turkey has been aimed. In the direction of the aim, the air temperature and relative humidity data of total 11 meteorology stations have been examined according to The Thermo-hygrometric Index (THI) and the New Summer Simmer Index (SSI). According to this, it has been determined that the thermal comfort conditions are not appropriate in the period of October-May on average monthly. The months of June and September are the most appropriate to almost all kinds of tourism and recreation activities in the outdoor in terms of thermal comfort. When THI and SSI indices’ values are evaluated together, the periods between 5th – 25th June and 29th August-16th September are the most appropriate periods in the study area on average in terms of the thermal comfort for the tourism and recreation activities in the outdoor. Keywords: Thermal comfort, human health, The Thermo-Hygrometric Index, The Summer Simmer Index, Goller District, Turkey.

2020 ◽  
pp. 1420326X2096114
Author(s):  
S. Y. Qin ◽  
X. Cui ◽  
C. Yang ◽  
L. W. Jin

Radiant system has been increasingly applied in buildings due to its good thermal comfort and energy-saving potential. In this research, a simplified predicted mean vote (PMV) model and sensible cooling load equation were proposed based on human thermal comfort. Simulations were carried out using Airpak to explore relationships among thermal comfort characteristics, design and operation parameters. Results show that radiant surface temperature, fresh-air supply temperature and the area ratio are correlated approximately linearly with the indoor air temperature, while the relative humidity has little effect on the indoor air temperature. The indoor air velocity in the simulated environment was no more than 0.15 m/s, satisfying the requirements of limit values in the occupied zone. The results indicate that the optimum radiant surface temperature ( tc) is 19°C to 23°C when fresh-air supply temperature ( ts) is 26°C. The relative humidity ( φ) should be maintained at 50% to 70%, and the area ratio of radiant panels to total surfaces ( k1) should be kept within 0.15 to 0.38 when the radiant surface temperature is 20°C and the fresh-air supply temperature is 26°C. The simplified PMV model and the sensible load equation can provide reference for panel design based on characteristics of radiant cooling panels with a dedicated fresh-air system.


ACTA IMEKO ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 221
Author(s):  
Nicole Morresi ◽  
Sara Casaccia ◽  
Marco Arnesano ◽  
Gian Marco Revel

This paper presents an approach to assess the measurement uncertainty of human thermal comfort by using an innovative method that comprises a heterogeneous set of data, made by physiological and environmental quantities, and artificial intelligence algorithms, using Monte Carlo method (MCM). The dataset is made up of heart rate variability (HRV) features, air temperature, air velocity and relative humidity. Firstly, MCM is applied to compute the measurement uncertainty of the HRV features: results have shown that among 13 participants, there are uncertainty values in the measurement of HRV features that ranges from ±0.01% to ±0.7 %, suggesting that the uncertainty can be generalized among different subjects. Secondly, MCM is applied by perturbing the input parameters of random forest (RF) and convolutional neural network (CNN) algorithm, trained to measure human thermal comfort. Results show that environmental quantities produce different uncertainty on the thermal comfort: RF has the highest uncertainty due to the air temperature (14 %), while CNN has the highest uncertainty when relative humidity is perturbed (10.5 %). A sensitivity analysis also shows that air velocity is the parameter that causes a higher deviation of thermal comfort


2011 ◽  
Vol 243-249 ◽  
pp. 4905-4908
Author(s):  
Xue Min Sui ◽  
Xu Zhang ◽  
Guang Hui Han

Relative humidity is an important micro-climate parameter in radiant cooling environment. Based on the human thermal comfort model, this paper studied the effect on PMV index of relative humidity, and studied the relationship of low mean radiant temperature and relative humidity, drew the appropriate design range of indoor relative humidity for radiant cooling systems.The results show that high relative humidity can compensate for the impact on thermal comfort of low mean radiant temperature, on the premise of achieving the same thermal comfort requirements. However, because of the limited compensation range of relative humidity, together with the constraints for it due to anti-condensation of radiant terminal devices, the design range of relative humidity should not be improved, and it can still use the traditional air-conditioning design standards.


2020 ◽  
Vol 103 (3) ◽  
pp. 003685042094299
Author(s):  
Liang Zhang ◽  
Liangkui Qi ◽  
Jianhua Liu ◽  
Qingqing Wu

In this article, the thermal environment and the human thermal comfort of car cabin under different driving states in summer were studied experimentally. The weighted predictive mean vote model and the weighted equivalent temperature model were used for calculation and compared with the experimental values. The experimental results show that the air temperature and relative humidity distribution in cabin are affected by the space position and driving state. The temperature of the cabin seat, which is affected by solar radiation and crew, in the heating stage is slightly higher than the air temperature, while the cooling rate in the cooling stage is much lower than the air temperature. The predictive mean vote model and the equivalent temperature model are basically consistent with the actual thermal comfort of human body under the idle and driving conditions with the change of time. The prediction accuracy of the two models under the idle condition is higher than that under the driving condition, and the overall prediction accuracy of the equivalent temperature model is higher than that of the predictive mean vote model.


2020 ◽  
Vol 12 (19) ◽  
pp. 8123
Author(s):  
Jingming Qian ◽  
Shujiang Miao ◽  
Nigel Tapper ◽  
Jianguang Xie ◽  
Greg Ingleton

Extreme summertime heat is becoming a major issue for aircraft operations. As global temperatures continue to rise, some of the heaviest planes on the longest flights may eventually be unable to depart during the hottest part of summer days. During summer days, some airports have to reduce the payload of aircraft, including cargo and/or passengers in the hotter days of summer. Nonetheless, there is no existing body of research on the potential for airport cooling. Furthermore, extreme heat on the ground also affects airport workers; loading and unloading luggage and servicing platforms between flights could become more arduous. With global warming proceeding, it is becoming increasingly urgent to find a suitable strategy to cool airport environments, perhaps by irrigation of a vegetated landscape. All airports have large enclosed areas (usually of grass) acting as a buffer between airport activities and the adjacent industrial, commercial and residential land utilization. This paper describes the trial of irrigating the buffer area of Adelaide airport and analyzes the performance of irrigation cooling for Adelaide airport, examining whether this can benefit human thermal comfort. Results indicate that irrigation provides cooling, and the cooling effect reduces along with the increasing instance from the middle of the irrigation area. At 15:00, the average air temperature was 1.8 °C cooler in the middle of the irrigation area than in the non-irrigation area, and the relative humidity was 5.8% higher during the trial period. On an extremely hot day (the maximum air temperature was 45.4 °C), it was 1.5 °C cooler in the middle of the irrigation area than upwind the of irrigation area, and 0.8 °C cooler than downwind of the irrigation area at 13:00. Human thermal comfort (HTC) is unfavorable in the runway, but greater improvements can be made through promotion of irrigation.


2015 ◽  
Vol 7 (5) ◽  
pp. 939
Author(s):  
Juliete Baraúna dos Santos

Foram obtidas medidas das variáveis meteorológicas temperatura do ar, umidade relativa do ar e velocidade do vento através da estação automática instalada em Arapiraca com a finalidade de monitorar as condições de tempo no município em diferentes períodos (época chuvosa e seca). Sendo utilizado o índice de desconforto (ID), o índice de desconforto de Kawamura (IDK), índice da temperatura efetiva (TE) e o índice de temperatura efetiva em função do vento (TEV). Os valores mais elevados dos índices que foram registrados para o período chuvoso, foram do índice id com aproximadamente 2,5 °C acima dos valores observados da temperatura do ar (em média 26,5 °C), caracterizando crescente desconforto para os indivíduos locais.  Para o período seco não houve registros de grandes variações entre os respectivos índices. E assim como no período chuvoso, os valores mais elevados no período seco foram do índice id, indicando nesse período também forte desconforto. Os valores obtidos estiveram condizentes com a literatura, sendo a sensação térmica mais preponderante durante o inverno. E, de acordo com as variações, em todo período de estudo (05 de maio de 2008 a 05 de maio de 2011) a população foi submetida aos alertas de atenção e muito cuidado, situação esta que pôde provocar fadiga ou cãibras, esgotamento e insolação nos casos de exposição prolongada e atividade física.      A B S T R A C T Measurements of meteorological variables air temperature, relative humidity and wind speed by automatic station installed in Arapiraca in order to monitor the weather conditions in the city in different periods (dry and rainy season) were obtained. Being used the discomfort index (ID), the discomfort index of Kawamura (IDK), index of effective temperature (TE) and the index of effective temperature as a function of wind (TEv). Higher index values ​​that were recorded for the rainy season, the index id were approximately 2.5 ° C above the observed values ​​of air temperature (average 26.5 ° C), indicating increasing discomfort for local individuals . For the dry period there were no reports of large variations between the respective indices. And just as the rainy season, the highest values ​​in the dry season were the index id, indicating that period also strong discomfort. The values ​​obtained were consistent with the literature, the most predominant wind chill during the winter. And, according to the variations in the study period (May 5, 2008 to 05 maio 2011) the population was subjected to warnings of attention and care, a situation that could cause fatigue or cramps, exhaustion and heat stroke in cases of prolonged exposure and physical activity.   Key-Words: Urban climate. Thermal comfort Human. Bioclimatic


2020 ◽  
Author(s):  
Ara Kim ◽  
Gayoung Yoo

<p>As citizens face increasing heat risk due to climate change with urban heat island effect, heat risk assessments in urban have been conducted focusing on thermal diseases related to heatwave of vulnerable people. Although they provided a basis to establish adaptation strategies such as cooling centers, they could not consider citizens’ daily thermal comfort of diverse groups. Thermal comfort could be a part of heat risk because associated with work performance such as productive capacity as well as health. In particular, pedestrians’ thermal comfort can represent daily heat risk of outdoor urban environment. The past studies of pedestrians’ thermal comfort were evaluated using PMV (Predicted Mean Vote), an index based on temperature, wind velocity, relative humidity and a fixed number of metabolic rate depending on the subject’s activity level. The PMV ranges from -3 to +3 and higher value indicates higher discomfortable. Including metabolic factor, PMV did not actually consider an individuals’ physiological response (IPR) such as heart rate, skin temperature, etc. To overcome PMV’s limitation, IPR should be considered together with climatic factors when assessing pedestrians’ thermal comfort. Therefore, we aim to develop a new function of thermal comfort by incorporating PMV and IPR, especially heart rate, with validation using personal perception of thermal comfort based on survey. We selected a route of 500m length in Suwon, South Korea and 9 volunteer pedestrians walked the selected route 8 times at 2-4 pm. The walk experiment was repeated for 4 days. During the experiment, air temperature, relative humidity, and wind velocity were monitored using portable meteorological sensors. The real-time heart rate of each pedestrian was recorded using wearable sensor (Mi-band3). After every day walk, we asked each pedestrian 10 questions regarding satisfaction of thermal environment, perceived temperature, etc. The average value of PMV was 2.99 belonging to very discomfort category. Although heart rate increased with the length of exposure time to heat, the heart rate over time did not consistently increase with air temperature. It was probably because our temperature range (31.9℃- 35.2℃) during the experiment was not large enough and heart rate was influenced by other factors such as wind velocity. In the survey, 50% of volunteer pedestrians responded ‘discomfort’ and the others answered ‘slightly discomfort’. Comparing the survey (discomfort and slightly discomfort) with PMV (very discomfort), PMV generally overestimated. thermal comfort. We will categorize thermal comfort level according to heart rate increase between walking activity in outdoor and indoor. Here, the higher heart rate increase than average increase level indicates worse individual thermal comfort condition. This individual thermal comfort effect can modify the existing calculation of thermal comfort using air temperature, wind velocity, and humidity by adding modification factor of individual heart rate response (Ex. Thermal comfort=weighting factor(0.189*air temperature-0.775*wind velocity+0.195*relative humidity)). The final thermal comfort will be calculated based on the function and examined the precision of function through comparative analysis with the personal thermal perception of survey. As heart rate is an individual variable, we expect our function can be a tool evaluating the personalized heat risk.</p>


FLORESTA ◽  
2014 ◽  
Vol 45 (2) ◽  
pp. 409 ◽  
Author(s):  
Daniela Biondi ◽  
Angeline Martini ◽  
Everaldo Marques de Lima Neto

O objetivo desta pesquisa foi avaliar as condições de conforto térmico do Colégio Estadual Santa Gemma Galgani, Curitiba, PR comparando ambientes internos e externos em diferentes estações do ano. A análise do conforto térmico foi realizada através do índice PET. As coletas foram feitas no outono, inverno e primavera de 2011, em dois dias e em dois ambientes distintos. Em cada dia de coleta, foi instalado um equipamento dentro da sala de aula e outro na área externa (pátio), caracterizada como: ambiente 1 - área externa com mais de 90% de impermeabilização e menos árvores; e ambiente 2 - área externa com menos de 30% de impermeabilização e mais árvores. A área do colégio possui 7.634,91 m2, sendo 36,56% de áreas permeáveis e 60,44% de impermeáveis. Nas três estações do ano, a temperatura do ar foi mais alta no pátio, com exceção do outono para o ambiente 1 e da primavera para o ambiente 2. Houve diferenças significativas nas condições de conforto entre os ambientes 1 e 2, indicando que as áreas são distintas pela permeabilidade e quantidade de vegetação. Conclui-se que, no geral, as salas de aula do colégio nas estações do outono, inverno e primavera apresentaram conforto térmico na maioria do período observado.Palavras-chave: Índice PET; Termômetro de Globo; temperatura do ar; umidade relativa do ar. AbstractAn introduction to thermal-environmental comfort state college St. Gemma Galgani, Curitiba, Parana, Brazil. The aim of this study was to evaluate the thermal comfort of the State College Santa Gemma Galgani, Curitiba, PR comparing internal and external environments in different seasons. The analysis of thermal comfort index was performed using PET. Collections were made in the fall, winter and spring of 2011 in two days and in two different environments. Every day a collect was installed equipment within the classroom and another in the outer area (outdoor), characterized as an environment 1 - outdoor area with more than 90% of waterproofing and fewer trees; and the environment 2 - external area under 30% waterproofing and more trees. The area of the college has 7634.91 m2 and 36.56% to 60.44% permeable areas and waterproof. In three seasons, the air temperature was higher in the courtyard, with the exception of autumn to the environment and a spring for the environment 2. There were significant differences in terms of comfort between locations 1 and 2, indicating that the areas are distinct permeability and the amount of vegetation. It is concluded that, overall, the classrooms of the college stations in the fall, winter and spring had thermal comfort for most of the observed period.Keywords: PET index; Globe Thermometer; air temperature; relative humidity.


Sign in / Sign up

Export Citation Format

Share Document