scholarly journals STABILITAS, TOTAL POLIFENOL, DAN AKTIVITAS ANTIOKSIDAN MIKROEMULSI EKSTRAK CASCARA (TEH KULIT KOPI) MENGGUNAKAN MINYAK KELAPA DAN MINYAK KELAPA SAWIT

2018 ◽  
Vol 12 (02) ◽  
pp. 184
Author(s):  
Sih Yuwanti ◽  
Triana Lindriati ◽  
Renny Dwi Anggraeni

Coffe cherry tea or cascara contained the compound of polyphenol class such as tannin, flavanol, flavan-3-ol, hydrazine acid, antosianin. The compound is very sensitive to oxygen and light because it is easily oxidized. Microemulsions can control both the active ingredient and can protect the active component from undesirable oxidation. Mikoemulsions is composed of water, oil, and food surfactant. Vegetable oil sources that can be applied in microemulsion are coconut oil and palm oil. The addition of cascara extract to microemulsion is expected to provide functional value of microemultion. However, the addition of cascara extract in microemulsion formulation affected the stability of microemulsion system. The objective of the research was to determine the effect of oil and cascara to stability of microemulsion, content of polyphenol and the antioxidant activity of microemulsion. The result showed that the kinds of oil variation given significantly effect for the microemulsion stability. The palm oil resulted the higher absorbance than coconut oil. The concentration of cascara extract had significantly effect for the microemulsion stability. The variation of cascara extract increased the absorbance value and significantly effect to the polyphenol total and antioxidant activity. Keywords: cascara, coconut oil, lecithin, microemultion, palm oil, tween 80

2006 ◽  
Vol 3 (1) ◽  
pp. 8-21
Author(s):  
Mahdi Jufri ◽  
◽  
Effionora Anwar ◽  
Putri Margaining Utami

Various solubilization techniques have been developed to enhance the bioavailability of hydrophobic drugs. One of the solubilization techniques is preparation of microemulsion. Microemulsion is a potential carrier in drug delivery system because it has many advantageous characteristics. In this research, hydrophobic drug was made in a dosage form of oil in water (O/W) microemulsion using ketoprofen as a model and investigated the influence of adding starch hydrolisates with dextrose equivalent (DE) 35-40 in variety concentrations (0,0%; 1,5%; 2,0%; 2,5%) to the stability of this microemulsion system. This microemulsion consisted of isopropyl miritate as oil phase, tween 80 and lechitin as surfactants, ethanol as cosurfactant, propylene glycol as cosolvent, starch hydrolisates DE 35–40 as stabilizer, and water as external phase. The evaluation was stability test both phisically and chemically. The result showed that the stability of microemulsion system increased significantly by adding starch hydrolisates DE 35-40 at 2,5%.


Author(s):  
Sunee Chansakaow ◽  
Panee Sirisa-ard ◽  
Ruttiros Khonkarn

Objective: The aim of this study was to incorporate xanthone into Making (Hodgsonia heteroclita) microemulsions and to evaluate the antioxidant activity of the formulations.Methods: Making oil was obtained from the seed of Hodgsonia heteroclite by a screw press machine. The solubility of xanthone in various oils, surfactants, and co-surfactants was investigated. Stable Making microemulsion and microemulsion-based gel were simultaneously loaded with xanthone. Finally, an in vitro xanthone release study was carried out and antioxidant activity was determined.Results: The optimal formulations of the Making microemulsion consisted of Making oil, capryol 90, tween 80, propylene glycol, and water. The average droplet size of xanthone-loaded Making microemulsion was around 110–130 nm. It was found that the stability of the xanthone-loaded Making microemulsion-based gel was higher than the xanthone-loaded Making microemulsion. Besides, the release of xanthone from the Making microemulsion-based gel was lower than that of the Making microemulsion. Moreover, it was found that the antioxidant activity of both xanthone-loaded Making microemulsion (TEAC and EC values of 9.8 mmol/mg and 14.8 mmol/mg, respectively) and microemulsion-based gel (TEAC and EC values of 9.4 mmol/mg and 18.5 mmol/mg, respectively) remained high even after extended storage conditions.Conclusion: It was concluded that Making oil is an attractive material to deliver xanthone in pharmaceutical applications.


Buletin Palma ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 31
Author(s):  
Linda Trivana ◽  
Nugraha E. Suyatma ◽  
Dase Hunaefi ◽  
S. Joni Munarso

<p>Virgin coconut oil (VCO) is high quality coconut oil and categorized as the healthiest oil and functional foods. Based on these benefits, the development of a VCO in emulsion product might increase the human consumption of coconut oil because consumers dislike the only taste of pure VCO. The aim of this study was to develop the water compatible form of VCO through nano-emulsification. The effect of different types and amounts of surfactants (Tween 80 and Span 80) on the physio-chemical characteristic of emulsion containing VCO was investigated. VCO based emulsions were prepared with the aid of Ultra-Turrax homogenizer. Emulsions were developed by adding and mixing VCO with surfactants. The ratio of Tween 80 and Span 80 used were 0:10, 2.5:7.5, 5:5, 7.5:2.5, and 10:0. The droplet size of nanoemulsions consisting of Tween 80:Span 80 (0:10, 2.5:7.5, 5:5, 7.5:2.5, and 10:0) were 1.343, 0.606, 0.829, 1.439, and 2.506µm, respectively. Based on the TEM analysis and polydispersity index (PDI) &gt;0.5 showed the oil droplets are in not uniform shape, indicating a unstable emulsion. VCO emulsion with ratio Tween 80:Span 80 (0:10) obtained a homogeneous emulsion (stable) compare than that of others and w/o type emulsion. The stability of emulsion is evaluated by turbidity measurement using UV-VIS spectrophotometer with wavelength 502 nm. A combination of  treatments (ambient condition, thermal treatmeant (40°C)), and centrifuge) of VCO emulsion has resulted on thermal treat, the turbidity measured from the emulsion was higher than the other emulsion, reflecting the presence of the smaller droplets in this emulsion.</p>


2017 ◽  
Vol 9 ◽  
pp. 140
Author(s):  
Mentari Mayang Suminar ◽  
Mahdi Jufri

Objective: Tocotrienols have an antioxidant potential higher than that of tocopherols. Nanoemulsion gel can deliver tocotrienols into the skin toprevent skin damage caused by free radicals and improve the stability of the dosage form. The present study aimed to determine the physical stabilityand antioxidant activity of a nanoemulsion gel formulation containing tocotrienol.Methods: The tocotrienol nanoemulsion was made using tocotrienols, oleic acid, Tween 80, 96% ethanol, and propylene glycol. The gel base was madeusing a carbomer and triethanolamine. A physical stability test was conducted at three different temperatures, namely, low temperature (4±2°C),room temperature (27±2°C), and high temperature (40±2°C). The antioxidant activity was measured using the 2,2-diphenyl-1-picrylhydrazyl methodfor determining inhibitory concentration (IC50) values.Results: Formula 1 demonstrated the best physical stability, with a pH of 6.2. The droplet size of the tocotrienol nanoemulsion gel was 596 nm, witha zeta potential value of −27.1 nm. The IC50 of the tocotrienol nanoemulsion gel was 6252.14 ppm.Conclusion: The nanoemulsion gel formulation retained antioxidant activity and was physically stable for 8 weeks.


2019 ◽  
Vol 39 (1) ◽  
pp. 30 ◽  
Author(s):  
Nanik Suhartatik ◽  
Akhmad Mustofa ◽  
Ponco Mursito

Anthocyanin was developed into natural food colorant in microemulsion systems to improve their stability and readiness for food preparation. Anthocyanin has an antioxidant activity. The degradation of anthocyanin into small compound could increase the biological activity. Anthocyanin was extracted from black glutinous rice and prepared using food grade surfactant such as Tween 80, Tween 20, and Span 80. Microemulsion was then added into modified deMann Rogosa Sharp (MRS) medium as much as 5, 10, 15, 20 and 25 ppm. Lactic acid bacteria genus Pediococcus pentosaceus N11.16 were grown for 18–24 hours and were used as enzyme producers. This experiment was aimed to determine the stability of anthocyanin in microemulsion systems to enzymatic degradation. The modified MRS medium was added with microemulsion and incubated for 24 h. Phenolic content remained stable during the fermentation process in all treatments, while the highest antioxidant activity was found in the sample with 20 ppm of anthocyanin. Total acid-producing bacteria were also monitored during the incubation and the result showed that there was a decline in their growth. There was a significant change in the antioxidant activity during incubation.


2018 ◽  
Vol 38 (1) ◽  
pp. 30
Author(s):  
Setyaningrum Ariviani ◽  
Windi Atmaka ◽  
Sri Raharjo

β-Carotene exhibits a wide range of health benefits, but its application in food formulation is very limited because of its instability and susceptibility to degradation. The stability of β-carotene can be improved by incorporation into an oil-in-water (o/w) emulsions. The objective of this research was to characterize β-carotene loaded nanoemulsions prepared with spontaneous emulsification method using ternary food-grade surfactants (Tween 80, Span 40, Span 80) and palm oil or VCO (virgin coconut oil) as oil phase with the surfactant-oil ratio of 4. The physicochemical stability of β-carotene loaded nanoemulsions during simulated digestions, which consist of the mouth, stomach, and intestine phases, was also evaluated using in-vitro digestion model. The results showed that β-carotene loaded nanoemulsions, prepared either using VCO or palm oil as the oil phase, had neutral pH (6.8±0.1), mean particle diameter of 129 -159 nm, showed monomodal particle size distribution with low polydispersity index (PdI) values  (0.214 - 0.266), and were not significantly different in zeta potential values ([-6,59]–[-8,9]). The β-carotene loaded nanoemulsions with VCO as the oil phase had a smaller mean particle diameter than that of palm oil. The physical stability of the β-carotene loaded nanoemulsions against digestive simulation in the mouth, stomach or intestine phases was not influenced by the oil phase type.  Both nanoemulsions were stable against simulated digestion in the mouth and stomach phases. After passing through the intestinal phase, the mean particle diameter increased and the particle size distribution changed from monomodal to bimodal. The β-carotene retention after passing through the mouth, stomach and intestinal phases of the β-carotene loaded nanoemulsion prepared using VCO were not significantly different from the palm oil. ABSTRAKβ-Karoten mempunyai berbagai manfaat kesehatan, namun aplikasinya dalam formulasi pangan sangat terbatas karena tidak stabil dan mudah mengalami degradasi. Stabilitas β-karoten dapat ditingkatkan dengan menggabungkannya dalam sistem penghantaran berbasis emulsi minyak dalam air (o/w). Penelitian ini bertujuan untuk melakukan karakterisasi nanoemulsi β-karoten yang dibuat dengan metode emulsifikasi spontan menggunakan kombinasi tiga surfaktan food grade (Tween 80, Span 40, Span 80), minyak sawit maupun VCO (virgin coconut oil) sebagai fase minyak dengan rasio surfaktan-fase minyak 4.. Penelitian ini juga mengkaji stabilitas fisikokimiawi nanoemulsi β-karoten selama pencernaan di mulut, lambung dan usus dengan menggunakan model digesti in vitro. Hasil penelitian memperlihatkan bahwa nanoemulsi β-karoten yang dibuat dengan fase minyak VCO maupun minyak sawit memiliki pH netral (6,8±0,1), rerata diameter partikel 129–159 nm, distribusi ukuran partikel monomodal dengan nilai indeks polidispersitas (polydispersity index, PdI) rendah (0,214–0,266) dan zeta potensial yang tidak berbeda nyata ([-6,59]–[-8,9]). Nanoemulsi β-karoten dengan fase minyak VCO memiliki rerata diameter partikel yang lebih kecil dibanding minyak sawit sebagai fase minyak. Jenis fase minyak tidak berpengaruh terhadap stabilitas fisik nanoemulsi β-karoten selama simulasi pencernaan di mulut, lambung maupun usus. Nanoemulsi β-karoten dengan fase minyak VCO maupun minyak sawit stabil terhadap pencernaan di mulut maupun lambung. Setelah melewati fase usus, terjadi peningkatan diameter partikel rerata dan perubahan distribusi ukuran partikel dari monomodal menjadi bimodal. Retensi β-karoten dalam nanoemulsi VCO setelah melewati simulasi pencernaan mulut, lambung dilanjutkan fase usus tidak berbeda nyata dengan retensi β-karoten dalam nanoemulsi minyak sawit.


2016 ◽  
Vol 6 (2) ◽  
pp. 80-87
Author(s):  
Nurhayati Nurhayati ◽  
Budiyanto Budiyanto

Red palm oil, rich in carotenoids (?, ?, ? - carotene and tocopherol and tekotrienol), has been shown to have benefit properties to human health. The aims of the study are : 1) to obtain the stability of red palm oil emulsions; 2) to determine the viscosity in red palm oil emulsion, 3) to determine the level of consumer preferences. Three levels of tween 80 emulsion concentrations (0,5%; 1%; and 1,5%) were employed to produce red palm oil emulsions. The stability, viscosity, and the preference of the emulsions were compared with commercial scot emulsion. The results showed that the level the stability of red palm oil emulsion prepared using Tween 80 1% and 0.5% CMC stable for 22.27 hours, while Scott's emulsion over 4 weeks. In addition, Red palm oil emulsion prepared with 1.5% Tween 80 and 0.5% CMC had viscosity of 16.6 cP , similar to viscosity of Scott's emulsion of 18.7 cP. The consumer prefered the color and the flavor of the red palm oil emulsion prepared with Tween 80 1% and 0.5% CMC compared to that of two other treatments.


2018 ◽  
Vol 7 (4) ◽  
pp. 184
Author(s):  
Natalie Indirasvari K. S. ◽  
I Dewa Gede Mayun Permana ◽  
I Ketut Suter

Microemulsion is a dispersion system developed from emulsions, which is an oil dispersion system in water, stabilized by a surfactant. Oil-in-water (o/w) microemulsion is an emulsion system suitable for encapsulation and carrier of lipophilic components in the beverage industry. The food grade microemulsion formulation is limited by the type of surfactant that can be used. This research aims to obtain an o/w microemulsion formulation which is stable during storage using three surfactants. In this study, 3 types of food grade surfactants were used, Tween 80, Tween 20, and Span 80, and the oil used is Virgin Coconut Oil (VCO). This research is done in two stages. The first stage of research was the determination of the best microemulsion of 5 variations of HLB: 11, 12, 13, 14, and 15. The second stage is the storage stability test of the microemulsion chosen in the first stage for 7 weeks with observation every week. The data obtained were analyzed by ANOVA. The results of the study shows that HLB 11, 12, 13, 14, and 15 obtained by using 3 surfactants can produce microemulsions. The optimum HLB to obtain the best microemulsion stability is HLB 13. The microemulsion with HLB 13 obtained using 3 surfactants is stable during time of 7 weeks storage.


LWT ◽  
2021 ◽  
pp. 111583
Author(s):  
Wenjiao Liu ◽  
Ning Pan ◽  
Ying Han ◽  
Dejie Li ◽  
Jinling Chai

Sign in / Sign up

Export Citation Format

Share Document