scholarly journals THE ANALYSIS OF RECTANGULAR COLUMN PERFORMANCE TOWARDS STRUCTURAL REINFORCED CONCRATE ELEMENTS BEHAVIOR

2019 ◽  
Vol 3 (2) ◽  
pp. 123
Author(s):  
Celica Amira ◽  
Dwi Nurtanto ◽  
Nanin Meyfa Utami

The column has a different cross-sectional capacity based on the direction of the X and Y moments based from the cross section. This research analyzes the performance of reinforced concrete by transformis the square column that already exists into a rectangular column with the function of the building is apartment. The result of this research was to find out performance of rectangular column on the behavior of high building structure. This Research analyzes two shapes of column rectangular and Square with the same area of concrete and reinforcement with all sides equal. Structure will be modeled by structural analysis program. Analyze using interaction diagram by structural analysis program. to find out the collapse of the column. The results of this Research indicates that axial load in any cross section has the same values, as long as the column has the same cross-sectional area and total of reinforcement area. Moment and shear loads with rectangular have a smaller Force on the strong axis X, while in weak axis Y have a greater Force. The displacement on the strong axis X with Square column have a smaller deviations of 10,81%, while on the weak axis Y have a greater deviations of 12,05%. Kolom memiliki kapasitas penampang yang berbeda berdasarkan arah momen X dan Y jika dilihat dari sisi penampangnya. Penelitian ini menganalisis kinerja struktur beton bertulang dengan merubah bentuk persegi sama sisi menjadi bentuk persegi panjang dengan fungsi bangunan sebagai apartemen. Tujuan penelitian ini untuk mengetahui kinerja kolom dengan bentuk persegi panjang terhadap perilaku struktur gedung seperti simpangan dan gaya dalam pada gedung dalam menerima beban gempa. Penelitian ini dilakukan dengan dua bentuk penampang, yaitu persegi sama sisi dan persegi panjang dengan luas penampang beton serta luas tulangan sama dengan tulangan merata. Struktur dimodelkan menggunakan program bantu struktur. Menganalisis kolom menggunakan diagram interaksi dengan program bantu struktur untuk mengetahui letak keruntuhan kolom. Hasil analisis menunjukkan gaya aksial dalam bentuk penampang apapun memiliki hasil yang sama, selama memiliki luas penampang kolom dan luas tulangan total yang sama. Gaya momen dan gaya geser kolom persegi panjang menghasilkan gaya yang lebih kecil pada sumbu kuat X, sedangkan pada sumbu lemah Y menghasilkan gaya yang lebih besar. Simpangan struktur antar lantai pada sumbu kuat X dengan penampang kolom persegi sama sisi menghasilkan simpangan yang lebih kecil 10,81%, sedangkan pada sumbu lemahnya menghasilkan simpangan lebih besar yaitu 12,05%.

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Yiwei Lu ◽  
Hanlong Liu ◽  
Changjie Zheng ◽  
Xuanming Ding

X-section cast-in-place concrete pile is a new type of foundation reinforcement technique featured by the X-shaped cross-section. Compared with a traditional circular pile, an X-section pile with the same cross-sectional area has larger side resistance due to its larger cross-sectional perimeter. The behavior of static loaded X-section pile has been extensively reported, while little attention has been paid to the dynamic characteristics of X-section pile. This paper introduced a large-scale model test for an X-section pile and a circular pile with the same cross-sectional area subjected to cyclic axial load in sand. The experimental results demonstrated that cyclic axial load contributed to the degradation of shaft friction and pile head stiffness. The dynamic responses of X-section pile were determined by loading frequency and loading amplitude. Furthermore, comparative analysis between the X-section pile and the circular pile revealed that the X-section pile can improve the shaft friction and reduce the cumulative settlement under cyclic loading. Static load test was carried out prior to the vibration tests to investigate the ultimate bearing capacity of test piles. This study was expected to provide a reasonable reference for further studies on the dynamic responses of X-section piles in practical engineering.


Author(s):  
Roozbeh (Ross) Salary ◽  
Jack P. Lombardi ◽  
Prahalad K. Rao ◽  
Mark D. Poliks

The goal of this research is online monitoring of functional electrical properties, e.g., resistance, of electronic devices made using aerosol jet printing (AJP) additive manufacturing (AM) process. In pursuit of this goal, the objective is to recover the cross-sectional profile of AJP-deposited electronic traces (called lines) through shape-from-shading (SfS) analysis of their online images. The aim is to use the SfS-derived cross-sectional profiles to predict the electrical resistance of the lines. An accurate characterization of the cross section is essential for monitoring the device resistance and other functional properties. For instance, as per Ohm’s law, the electrical resistance of a conductor is inversely proportional to its cross-sectional area (CSA). The central hypothesis is that the electrical resistance of an AJP-deposited line estimated online and in situ from its SfS-derived cross-sectional area is within 20% of its offline measurement. To test this hypothesis, silver nanoparticle lines were deposited using an Optomec AJ-300 printer at varying sheath gas flow rate (ShGFR) conditions. The four-point probes method, known as Kelvin sensing, was used to measure the resistance of the printed structures offline. Images of the lines were acquired online using a charge-coupled device (CCD) camera mounted coaxial to the deposition nozzle of the printer. To recover the cross-sectional profiles from the online images, three different SfS techniques were tested: Horn’s method, Pentland’s method, and Shah’s method. Optical profilometry was used to validate the SfS cross section estimates. Shah’s method was found to have the highest fidelity among the three SfS approaches tested. Line resistance was predicted as a function of ShGFR based on the SfS-estimates of line cross section using Shah’s method. The online SfS-derived line resistance was found to be within 20% of offline resistance measurements done using the Kelvin sensing technique.


2020 ◽  
Vol 105 (12) ◽  
pp. e4848-e4856
Author(s):  
Taïsha V Joseph ◽  
Signe Caksa ◽  
Madhusmita Misra ◽  
Deborah M Mitchell

Abstract Context Among patients with type 1 diabetes (T1D), the risk of hip fracture is up to 6-fold greater than that of the general population. However, the cause of this skeletal fragility remains poorly understood. Objective To assess differences in hip geometry and imaging-based estimates of bone strength between youth with and without T1D using dual-energy x-ray absorptiometry (DXA)-based hip structural analysis. Design Cross-sectional comparison. Participants Girls ages 10 to 16 years, including n = 62 with T1D and n = 61 controls. Results The groups had similar age, bone age, pubertal stage, height, lean mass, and physical activity. Bone mineral density at the femoral neck and total hip did not differ in univariate comparisons but was lower at the femoral neck in T1D after adjusting for bone age, height, and lean mass. Subjects with T1D had significantly lower cross-sectional area, cross-sectional moment of inertia, section modulus, and cortical thickness at the narrow neck, with deficits of 5.7% to 10.3%. Cross-sectional area was also lower at the intertrochanteric region in girls with T1D. Among those T1D subjects with HbA1c greater than the cohort median of 8.5%, deficits in hip geometry and strength estimates were more pronounced. Conclusions DXA-based hip structural analysis revealed that girls with T1D have unfavorable geometry and lower estimates of bone strength at the hip, which may contribute to skeletal fragility and excess hip fracture risk in adulthood. Higher average glycemia may exacerbate effects of T1D on hip geometry.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1012 ◽  
Author(s):  
Dorota Krawczyk ◽  
Tomasz Teleszewski

This paper presents the analysis of the heat conduction of pre-insulated double ducts and the optimization of the shape of thermal insulation by applying an elliptical shape. The shape of the cross-section of the thermal insulation is significantly affected by the thermal efficiency of double pre-insulated networks. The thickness of the insulation from the external side of the supply and return pipes affects the heat losses of the double pre-insulated pipes, while the distance between the supply and return pipes influences the heat flux exchanged between these ducts. An assumed elliptical shape with a ratio of the major axis to the minor half axis of an ellipse equaling 1.93 was compared to thermal circular insulation with the same cross-sectional area. All calculations were made using the boundary element method (BEM) using a proprietary computer program written in Fortran as part of the VIPSKILLS project.


2005 ◽  
Vol 12 (4) ◽  
pp. 277-292 ◽  
Author(s):  
D J Oldham ◽  
Jian Kang ◽  
M W Brocklesby

The pressure differences that can be used to drive a natural ventilation system are very small and thus large apertures are required to allow sufficient air to enter and leave a building to ensure good air quality or thermal comfort. Large apertures are potential acoustic weak points on a façade and may require some form of acoustic treatment such as absorbent linings, in which case the ventilator is similar to a short section of lined duct. In ducts, the performance of absorbent linings increases with the length of lining and the ratio of the length of lined perimeter to the cross sectional area of the duct. Thus, for a duct of a given cross sectional area, a lining is more effective for a duct with a high aspect ratio than for a duct with a square cross section. However, the high aspect ratio cross section will result in greater flow resistance and impede the airflow performance. In this paper numerical methods are employed to investigate the effect of different configurations of a lined aperture on the acoustical and ventilation performance of the aperture in order to establish the optimum configurations.


2013 ◽  
Vol 135 (8) ◽  
Author(s):  
Worachest Pirompugd ◽  
Somchai Wongwises

In this study, efficiencies for partially wetted fins for the uniform cross section spine, conical spine, concave parabolic spine, and convex parabolic spine are presented using an analytical method. Depending on the set of boundary conditions, there are two methods for deriving the efficiencies of partially wet fins for each spine. The eight equations for fin efficiencies were investigated. Fin efficiency is a function of the length of the dry portion. Thus, the equations for calculating the length of the dry portion are also presented. The findings indicate that a larger cross-sectional fin results in a higher conduction heat transfer rate. Contrarily, the fin efficiency is lower. This is different from the longitudinal fin, for which the trend lines of heat transfer rate and fin efficiency are the same. This converse relationship is due to the effect of the ratio of the cross-sectional area to the surface area. Moreover, partially wet fin efficiencies decrease with increased relative humidity. For convenience, the approximate equation for efficiencies for partially wet fins, which is derived from the equations for fully wet and fully dry fin efficiencies, is also presented.


Mechanik ◽  
2019 ◽  
Vol 92 (7) ◽  
pp. 412-414
Author(s):  
Jan Burek ◽  
Rafał Flejszar ◽  
Barbara Jamuła

The analytical and numerical model of the cross-section of the machined layer in the process of milling of concave rounding is presented. Simulation tests were carried out to determine the cross-sectional area of the cutting layer. A strategy has been developed that allows to increase the stability of the cross-section area of the cutting layer when the mill enters the inner corner area.


Author(s):  
RA Sri Martini ◽  
Mira Setiawati ◽  
Fathur Nauvaliyanto

Multi-storey buildings are vertical buildings that are made to meet human needs as places of education, government, commerce, sports facilities and others. As the development of science and technology, especially in the field of civil engineering, many computer programs have been developed to help in analyzing and designing a building structure. There are several computer programs developed to analyze and design structures, including SAP 2000 (Structural Analysis Program), with this program, it will be easier for writers to plan a building.The research carried out was to plan the structure of a six-story hotel building. This hotel building is the object of research planned by the author and was designed using the help of the SAP2000 program. Building design planning only includes planning beams and columns. In this plan the writer uses references such as regulations, PPPURG 1987, SNI 03-2847-2002, SNI - 1726 - 2002The results of the design of the hotel building structure used three variations that have the results of column K1 used size 45 cm x 45 cm, reinforcement base 12 D16 and stirrup reinforcement ?10-90, column K2 used size 35 cm x 35 cm, base reinforcement 8 D16 and stirrup reinforcement ?10-90, B1 beam used size 20 cm x 40 cm, support reinforcement 7 D14, field reinforcement 7 D14, waistline 2 D12, and support stirrup reinforcement ?10-80 and field stirrup ?10-170, beam B2 used size 15 cm x 20 cm, 75D14 support reinforcement, 5 D14 field reinforcement, 2 D12 waistline, and pedestal stirrup ulangan10-30 and field stirrup ?10-70


1991 ◽  
Vol 260 (6) ◽  
pp. L522-L529 ◽  
Author(s):  
H. Jiang ◽  
A. J. Halayko ◽  
K. Rao ◽  
P. Cunningham ◽  
N. L. Stephens

A variety of normalizations have been employed to compare maximal isometric force (Po) produced by smooth muscles at different locations and stages of maturation. Because these procedures have not always been based on rigorous principles, confusion has resulted. To obtain a less ambiguous index of force production, we measured in vitro Po from mongrel canine tracheal (TSM) and bronchial (BSM) smooth muscle with an electromagnetic lever and normalized it to force per unit cross-sectional area of whole tissue (tissue stress), to force per unit cross-sectional area of muscle in the cross section of total tissue (muscle stress), and to force per fractional unit of myosin in the tissue cross section (myosin stress). Proportion of myosin in cross-sectional area of tissue was deduced from data obtained by sodium dodecyl sulfate gel electrophoresis of crude muscle extracts. For TSM, tissue stress was 1.499 X 10(5) N/m2 +/- 0.1 (SE), whereas it was only 0.351 X 10(5) N/m2 +/- 0.05 (SE) for BSM, representing a 4.27-fold difference (P less than 0.01). There was a 1.60-fold difference (P less than 0.05) in muscle stress, which was correlated to the morphometric finding that 79 +/- 1.4% (SE) of the tracheal strip cross section was muscle, whereas only 30 +/- 1.0% (SE) of bronchial tissue was occupied by muscle. Average myosin content was the same in smooth muscle cells of TSM and BSM, indicating that total amount of myosin in tissue cross sections was essentially a function of proportional area of muscle cells in total tissue cross sections.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document