scholarly journals Microwave-assisted synthesis of biologically active amide derivatives of naphthenic acids under neat conditions

2018 ◽  
Vol 37 (1) ◽  
pp. 13 ◽  
Author(s):  
Ljubica Grbović ◽  
Bojana Radovan Vasiljević ◽  
Ksenija Pavlović ◽  
Timea Hajnal-Jafari ◽  
Simonida Đurić ◽  
...  

Within the field of green chemistry, a noticeable results were obtained in the solvent-free synthesis of amide derivatives of naphthenic acids under microwave irradiation. Naphthenic acid amides, anilides, and morpholides were synthesized directly from free carboxylic acids and amines in the absence of solvent and catalyst under high-temperature heating in a closed-vessel system of microwave reactor. With this new and efficient method, different primary, secondary, and tertiary amide derivatives of naphthenic acids were obtained in good to excellent yields. Synthesized derivatives were assayed as plant rooting agents for their stimulative effects on the formation of adventitious roots in sunflower cuttings and susceptibility for growth stimulation of Pseudomonas sp. strains.

2017 ◽  
Vol 72 (4) ◽  
pp. 249-256 ◽  
Author(s):  
Hanan A. Al-Hazam ◽  
Zeki A. Al-Shamkani ◽  
Najim A. Al-Masoudi ◽  
Bahjat A. Saeed ◽  
Christophe Pannecouque

AbstractThe development of new HIV non-nucleoside reverse transcriptase inhibitors offers the possibility of generating structures of increased potency. To this end, coupling of mefenamic acid (4) with 4-amino-acetophenone (6) in the presence of dicyclohexylcarbodiimide and dimethylaminopyridine (DMAP) reagents afforded 4-(acetyphenyl)-2-((2,3-dimethylphenyl)amino)benzamide (7). Analogously, treatment of mefenamyl chloride (5) prepared from 4 with 6 under microwave irradiation (MWI) afforded 7. A new series of substituted chalconyl-incorporated amide derivatives of mefenamic acid 8–13 were synthesized from condensation of 7 with various substituted benzaldehydes via the Claisen–Schmidt reaction. Treatment of 8 and 11 with thiourea in a basic medium afforded the thiopyrimidine analogues 14 and 15, respectively. The newly synthesized compounds were assayed against HIV-1 and HIV-2 in MT-4 cells. Compounds 9 and 11 showed cytotoxicity values of 2.17 and 2.06 μm, respectively, against mock-infected MT-4 cells (C type adult T leukemia cells), which considered to be promising antileukemic agents.


Author(s):  
Venkat Swamy Puli ◽  
Vukoti Kiran Kumar ◽  
Venkata Reddy Regalla ◽  
Anindita Chatterjee

Objective: The aim of the present study is to synthesize novel phenylacrylamide derivatives as potent bioactive agents.Methods: Novel N-(3-(4H-1,2,4-triazol-4-ylamino)-3-oxo-1-arylidene prop-2-yl) benzimidic acids (7a-c) have been synthesized by the reaction of 4-(arylidene)-2-phenyloxazol-5(4H)-ones (5a-c) with 4-amino-1, 2, 4-triazole (6) in the presence of anhydrous sodium acetate in glacial acetic acid. Titled compounds (7a-c) were obtained in good yields using microwave technology which resulted in dramatic reductions in reaction times leading to the formation of phenylacrylamide derivatives (7a-c) at a faster rate.Results: The structures of the newly synthesized compounds were characterized by Fourier-transform infrared, 1H NMR, 13C NMR, and mass spectral studies. This method can be an efficient method for the synthesis of phenylacrylamide derivatives (7a-c).Conclusion: All the final compounds were screened for their antimicrobial and antioxidant activities and found to be biologically active. Among all the compounds, 7b was found to be potent antimicrobial and antioxidant.


2020 ◽  
Vol 5 (443) ◽  
pp. 85-91
Author(s):  
Ibrayev M.K., ◽  
◽  
Takibayeva A.T., ◽  
Fazylov S.D., ◽  
Rakhimberlinova Zh.B., ◽  
...  

This article presents studies on the targeted search for new derivatives of azoles, such as benzthiazole, 3,5-dimethylpyrazole, 1,3,4-oxadiazole-2-thione, 1,3,4-thiadiazole. The possibility of combining in one molecule of the azole ring with other cyclic compounds: the alkaloid cytisine, morpholine, furan and some arenes has been studied. To obtain new compounds, the reactions of bromination, acylation, and interaction with isothiocyanates were studied. Optimal synthesis conditions were studied for all reactions. It was found that the reaction of 4-bromo-3,5-dimethylpyrazole with isothiocyanates, in contrast to the previously written derivatives of anilines, takes a longer time and requires heating the reaction mixture. The combination of a pirasol fragment with halide substituents often results in an enhanced therapeutic effect. The synthesized 2-bromine-N-(6-rodanbenzo[d]thiazole-2-yl)acetamide, due to the alkylbromide group, is an important synth in the synthesis of new benzthiazole derivatives. Its derivatives combine in one molecule the rest of rhodanbenzthiazole with alkaloid cytisine and biogenic amine morpholine and are potentially biologically active compounds, since the molecule structure contains several pharmacophoric fragments: benzthiazole and alkaloid (amine) heterocycles, rhodane and urea groups. The mechanism of formation of 1,3,4-oxadiazole-2-tyons from hydrazides under action on them by carbon disulfide was studied and assumed. It was shown that dithiocarbamates in acidic medium decompose with the release of hydrogen sulfide and the formation of highly reactive isothiocyanate group. Then, intra-molecular cyclization occurs, with the formation of end products - 1,3,4-oxadiazole-2-thions. The structures of the synthesized compounds were studied by 1H and 13C NMR spectroscopy. All synthesized substances are potentially biologically active compounds, since they contain several pharmacophore fragments in their structure.


2013 ◽  
Vol 9 (7) ◽  
pp. 920-925 ◽  
Author(s):  
Yi Bi ◽  
Jinyi Xu ◽  
Fei Sun ◽  
Xiaoming Wu ◽  
Wencai Ye ◽  
...  

Author(s):  
Vasil Tsanov ◽  
Hristo Tsanov

Background:: This article concentrates on the processes occurring in the medium around the cancer cell and the transfer of glycoside amides through their cell membrane. They are obtained by modification of natural glycoside-nitriles (cyano-glycosides). Hydrolysis of starting materials in the blood medium and associated volume around physiologically active healthy and cancer cells, based on quantum-chemical semi-empirical methods, is considered. Objective:: Based on the fact that the cancer cell feeds primarily on carbohydrates, it is likely that organisms have adapted to take food containing nitrile glycosides and / or modified forms to counteract "external" bioactive activity. Cancers, for their part, have evolved to create conditions around their cells that eliminate their active apoptotic forms. This is far more appropriate for them than changing their entire enzyme regulation to counteract it. In this way, it protects itself and the gene sets and develops according to its instructions. Methods:: Derived pedestal that closely defines the processes of hydrolysis in the blood, the transfer of a specific molecular hydrolytic form to the cancer cell membrane and with the help of time-dependent density-functional quantum- chemical methods, its passage and the processes of re-hydrolysis within the cell itself, to forms causing chemical apoptosis of the cell - independent of its non-genetic set, which seeks to counteract the process. Results:: Used in oncology it could turn a cancer from a lethal to a chronic disease (such as diabetes). The causative agent and conditions for the development of the disease are not eliminated, but the amount of cancer cells could be kept low for a long time (even a lifetime). Conclusion:: The amide derivatives of nitrile glycosides exhibit anti-cancer activity, the cancer cell probably seeks to displace hydrolysis of these derivatives in a direction that would not pass through its cell membrane and the amide- carboxyl derivatives of nitrile glycosides could deliver extremely toxic compounds within the cancer cell itself and thus block and / or permanently damage its normal physiology.


Author(s):  
Norshahidatul Akmar Mohd Shohaimi ◽  
Norfakhriah Jelani ◽  
Ahmad Zamani Ab Halim ◽  
Nor Hakimin Abdullah ◽  
Nurasmat Mohd Shukri

: The presence of relatively high naphthenic acid in crude oil may contribute to the major corrosion in oil pipelines and distillation units in crude oil refineries. Thus, high concentration Naphthenic Acids crude oil is considered tobe of low quality and is marketed at lower prices. In order to overcome this problem, neutralization method had been developed to reduce the TAN value in crude oil. In this study, crude oil from Petronas Penapisan Melaka was investigated. The parameters studied were reagent concentration, catalyst loading, calcination temperature and reusability of the potential catalyst. Basic chemical used were 2- methylimidazole in polyethylene glycol (PEG 600) with concentration 100, 500 and 1000 ppm. Cerium oxide-based catalysts supported onto alumina prepared with different calcination temperatures. The catalyst was characterized by using Brunauer-Emmett-Teller (BET), Fourier Transform Infrared Spectroscopy (FTIR) and Thermogravimetry Analysis-Differential Thermal Gravity (TGA-DTG) to study physical properties of the catalyst. The Ce/Al2O3 catalyst calcined at 1000°C was the best catalyst due to larger surface area formation which lead to increment of active sites thus will boost the catalytic activity. The result showed that the Ce/Al2O3 catalyst meet Petronas requirement as the TAN value reduced to 0.6 mgKOH/g from original TAN value of 4.22 mgKOH/g. The best reduction of TAN was achieved by using catalyst loading of 0.39% and reagent of 1000 ppm.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 497
Author(s):  
Ewa D. Raczyńska

Keto-enol prototropic conversions for carbonyl compounds and phenols have been extensively studied, and many interesting review articles and even books appeared in the last 50 years. Quite a different situation takes place for derivatives of biologically active azulene, for which only scanty information on this phenomenon can be found in the literature. In this work, quantum-chemical studies have been undertaken for symmetrically and unsymmetrically substituted azulenols (constitutional isomers of naphthols). Stabilities of two enol (OH) rotamers and all possible keto (CH) tautomers have been analyzed in the gas phase {DFT(B3LYP)/6-311+G(d,p)} and also in aqueous solution {PCM(water)//DFT(B3LYP)/6-311+G(d,p)}. Contrary to naphthols, for which the keto forms can be neglected, at least one keto isomer (C1H, C2H, and/or C3H) contributes significantly to the tautomeric mixture of each azulenol to a higher degree in vacuo (non-polar environment) than in water (polar amphoteric solvent). The highest amounts of the CH forms have been found for 2- and 5-hydroxyazulenes, and the smallest ones for 1- and 6-hydroxy derivatives. The keto tautomer(s), together with the enol rotamers, can also participate in deprotonation reaction leading to a common anion and influence its acid-base properties. The strongest acidity in vacuo exhibits 6-hydroxyazulene, and the weakest one displays 1-hydroxyazulene, but all azulenols are stronger acids than phenol and naphthols. Bond length alternation in all DFT-optimized structures has been measured using the harmonic oscillator model of electron delocalization (HOMED) index. Generally, the HOMED values decrease for the keto tautomers, particularly for the ring containing the labile proton. Even for the keto tautomers possessing energetic parameters close to those of the enol isomers, the HOMED indices are low. However, some kind of parallelism exists for the keto forms between their relative energies and HOMEDs estimated for the entire molecules.


ACS Omega ◽  
2021 ◽  
Author(s):  
Qiang Shang ◽  
Xiaobo Zhou ◽  
Ming-Rong Yang ◽  
Jing-Guang Lu ◽  
Yu Pan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document