scholarly journals Antibiotic sensitivity on pathogenic bacteria causing bacterial vaginosis

2021 ◽  
Vol 29 (1) ◽  
pp. 18
Author(s):  
Shiwi Linggarjati ◽  
Dita Diana Parti ◽  
Elly Nurus Sakinah

Objectives: To identify the sensitivity of antibiotics to pathogenic bacteria that cause Bacterial Vaginosis (BV).Materials and Methods: This type of research was an observational study with a sample of six specimens. The data were taken using primary data from patients who were swabbed in the vagina and then diagnosed BV with amsel criteria on vaginal secretion specimens carried out at Tanggul health center on January 23-February 23, 2020. The specimens were sent to Parahita Clinical Laboratory for bacterial identification and adjusted for sensitivity with CLSI using vitek 2 compact tool.Results: The results of this study identified the bacteria that caused bacterial vaginosis, the E. coli and K. pneumoniae with one sample of suspected ESBL. ESBL is a beta lactamase enzyme produced by bacteria and can induce bacterial resistance to penicillin, cephalosporin generation 1, 2, and 3. The types of bacteria found were E. coli and K. pneumoniae with high sensitivity antibiotics tested including piperacillin/tazobactam, ceftazidime, cefepime, ertapenem, meropenem, amikacin, gentamicin, tigecycline, and nitrofurantoin. Antibiotics with high levels of resistance tested against these bacteria included: ampicillin, amoxicillin, and ampicillin/sulbactam due to the mechanism of beta-lactam antibiotic resistance in the production of beta lactamase from bacteria.Conclusion: The type of bacteria found was E. coli and K. pneumoniae with high resistance levels in beta lactam antibiotics. 

2021 ◽  
Vol 33 (1) ◽  
Author(s):  
Tahira Akther ◽  
S. Ranjani ◽  
S. Hemalatha

Abstract Background ESBLs hydrolyze the beta-lactam ring of antibiotics and are not affected by 1st, 2nd, 3rd, and 4th generation antibiotics. There are over 400 ESBL enzymes that have already been investigated globally are present in Enterobacteriaceae species such as Escherichia coli, Klebsiella pneumoniae and Klebsiella oxytoca strains. Prevalence of ESBLs is slowly increased, from 10 to 40% in E. coli and K. pneumonia strains. Microorganisms producing ESBLs are challenging to physicians, clinical microbiologists, and antibiotic researchers. Results In this study, ESBL-producing strains of E. coli were subjected to antibiotic sensitivity screening. The efficacy of myco BR-AgNPs on growth in E. coli ATCC (25922) and clinical isolates of E. coli was determined by well diffusion method. Myco BR-AgNPs reduced the growth as well as inhibited the biofilm formation in ESBL-producing strains of E. coli. MIC and MBC were determined by using serial microdilution and surface drop method. The MICs were 0.078–0.625 µg/ml and MBCs were 0.312–1.25 µg/ml. The biofilm formation was effectively inhibited by myco BR-AgNPs when compared with control. The expression of CTX-M-15 gene was studied in clinical isolates of E. coli treated with antibiotic (positive control), mycosilver nanoparticles (test) and compared with the other positive control (untreated strains). Interestingly, the expression of CTX-M-15 was downregulated in the samples treated with myco BR-AgNPs. Conclusion The use of myco BR-AgNPs and their growth inhibitory effect on ESBL-positive strains were the main focus of this research. ATCC and ESBL strains used in this study were effectively inhibited by myco BR-AgNPs. The effect of myco BR-AgNPs on the expression of a gene encoding CTX-M-15 was tested on a molecular level, and the observed results showed that the gene expression was reduced when compared with control and antibiotic treatment. According to the current research, myco BR-AgNPs synthesized with the aid of endophytic fungal extract could be used to suppress the growth of ESBL-positive strains of E. coli. Myco BR-AgNPs may be an important alternative to various antibiotics in preventing bacterial resistance if optimized and tested for toxicity.


Antibiotics ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 98 ◽  
Author(s):  
Eunice Mgbeahuruike ◽  
Pia Fyhrquist ◽  
Heikki Vuorela ◽  
Riitta Julkunen-Tiitto ◽  
Yvonne Holm

Piper guineense is a food and medicinal plant commonly used to treat infectious diseases in West-African traditional medicine. In a bid to identify new antibacterial compounds due to bacterial resistance to antibiotics, twelve extracts of P. guineense fruits and leaves, obtained by sequential extraction, as well as the piperine and piperlongumine commercial compounds were evaluated for antibacterial activity against human pathogenic bacteria. HPLC-DAD and UHPLC/Q-TOF MS analysis were conducted to characterize and identify the compounds present in the extracts with promising antibacterial activity. The extracts, with the exception of the hot water decoctions and macerations, contained piperamide alkaloids as their main constituents. Piperine, dihydropiperine, piperylin, dihydropiperylin or piperlonguminine, dihydropiperlonguminine, wisanine, dihydrowisanine and derivatives of piperine and piperidine were identified in a hexane extract of the leaf. In addition, some new piperamide alkaloids were identified, such as a piperine and a piperidine alkaloid derivative and two unknown piperamide alkaloids. To the best of our knowledge, there are no piperamides reported in the literature with similar UVλ absorption maxima and masses. A piperamide alkaloid-rich hexane leaf extract recorded the lowest MIC of 19 µg/mL against Sarcina sp. and gave promising growth inhibitory effects against S. aureus and E. aerogenes as well, inhibiting the growth of both bacteria with a MIC of 78 µg/mL. Moreover, this is the first report of the antibacterial activity of P. guineense extracts against Sarcina sp. and E. aerogenes. Marked growth inhibition was also obtained for chloroform extracts of the leaves and fruits against P. aeruginosa with a MIC value of 78 µg/mL. Piperine and piperlongumine were active against E. aerogenes, S. aureus, E. coli, S. enterica, P. mirabilis and B. cereus with MIC values ranging from 39–1250 µg/mL. Notably, the water extracts, which were almost devoid of piperamide alkaloids, were not active against the bacterial strains. Our results demonstrate that P. guineense contains antibacterial alkaloids that could be relevant for the discovery of new natural antibiotics.


Author(s):  
Kavi Aniis ◽  
Rajamanikandan Kcp ◽  
Arvind Prasanth D

<p>ABSTRACT<br />Objective: Beta-lactams are the group of antibiotics that contain a ring called as “beta-lactam ring,” which is responsible for the antibacterial activity.<br />The presence of resistance among Gram-negative organisms is due to the production of beta-lactamases enzymes that hydrolysis the beta-lactam ring<br />thereby conferring resistance to the organism. This study is undertaken to determine the prevalence of extended-spectrum beta-lactamase (ESBL)<br />producing Gram-negative organism from clinical samples.<br />Methods: A total of 112 clinical samples were taken for this study. The combined disc synergistic test (CDST) was used for the phenotypic detection<br />of ESBL producers from the clinical samples. The genotypic identification of ESBL producers was carried out by alkaline lysis method by isolation of<br />plasmid DNA.<br />Result: A total of 87 bacterial isolates were isolated and identified. Among them, Klebsiella (41%) was the predominant organism followed by<br />Escherichia coli (33%), Proteus (10%), Pseudomonas (10%), and Serratia (6%). Among the various bacterial isolates, Klebsiella showed a higher<br />percentage of resistance. The CDST showed that 8 isolates of Klebsiella, 3 isolates of E. coli, and 1 isolate of Pseudomonas were found to be ESBL<br />producers. The genotypic confirmation showed that the two bacterial isolates, namely, Klebsiella and E. coli were found to possess temoniera (TEM)<br />gene which was the 400-500 bp conferring resistance to the antibiotics.<br />Conclusion: The results of this study suggest that early detection of ESBL producing Gram-negative organism is a very important step in planning the<br />therapy of patient in Hospitals. CDST continues to be a good indicator in the detection of ESBL producers.<br />Keywords: Beta-lactamases, Gram-negative bacilli, Extended-spectrum beta-lactamase, Resistance, Combined disc synergistic test.</p><p> </p>


2021 ◽  
Author(s):  
Shirin Ansari ◽  
James C. Walsh ◽  
Amy L. Bottomley ◽  
Iain G. Duggin ◽  
Catherine Burke ◽  
...  

Rod-shaped bacteria such as Escherichia coli can regulate cell division in response to stress, leading to filamentation, a process where cell growth and DNA replication continues in the absence of division, resulting in elongated cells. The classic example of stress is DNA damage which results in the activation of the SOS response. While the inhibition of cell division during SOS has traditionally been attributed to SulA in E. coli, a previous report suggests that the e14 prophage may also encode an SOS-inducible cell division inhibitor, previously named SfiC. However, the exact gene responsible for this division inhibition has remained unknown for over 35 years. A recent high-throughput over-expression screen in E. coli identified the e14 prophage gene, ymfM, as a potential cell division inhibitor. In this study, we show that the inducible expression of ymfM from a plasmid causes filamentation. We show that this expression of ymfM results in the inhibition of Z ring formation and is independent of the well characterised inhibitors of FtsZ ring assembly in E. coli, SulA, SlmA and MinC. We confirm that ymfM is the gene responsible for the SfiC phenotype as it contributes to the filamentation observed during the SOS response. This function is independent of SulA, highlighting that multiple alternative division inhibition pathways exist during the SOS response. Our data also highlight that our current understanding of cell division regulation during the SOS response is incomplete and raises many questions regarding how many inhibitors there actually are and their purpose for the survival of the organism. Importance: Filamentation is an important biological mechanism which aids in the survival, pathogenesis and antibiotic resistance of bacteria within different environments, including pathogenic bacteria such as uropathogenic Escherichia coli. Here we have identified a bacteriophage-encoded cell division inhibitor which contributes to the filamentation that occurs during the SOS response. Our work highlights that there are multiple pathways that inhibit cell division during stress. Identifying and characterising these pathways is a critical step in understanding survival tactics of bacteria which become important when combating the development of bacterial resistance to antibiotics and their pathogenicity.


1995 ◽  
Vol 29 (5) ◽  
pp. 501-514 ◽  
Author(s):  
Lori L Schoonover ◽  
Donna J Occhipinti ◽  
Keith A Rodvold ◽  
Larry H Danziger

Objective: To discuss the antimicrobial activity, pharmacokinetics, clinical efficacy, and adverse effect profile of piperacillin/tazobactam, a new beta-lactam/beta-lactamase inhibitor combination. Data Sources: Literature was identified by MEDLINE search of the medical literature, review of selected references, and data provided by the manufacturer. Study Selection: In vitro susceptibility data were surveyed from studies following the methods of the National Committee for Clinical Laboratory Standards. Data evaluating clinical efficacy were selected from all published trials and abstracts. Additional information concerning safety, chemistry, and pharmacokinetics was reviewed. Data Synthesis: The antimicrobial activity of piperacillin is enhanced by addition of tazobactam against gram-positive, gram-negative, and anaerobic bacteria. Tazobactam is active against a broad spectrum of plasmid and chromosomally mediated enzymes and has minimal ability to induce class I chromosomally mediated beta-lactamase enzymes. Piperacillin/tazobactam's expanded activity appears encouraging in the treatment of mixed aerobic and anaerobic infections. Direct comparisons of ticarcillin/clavulanate and piperacillin/tazobactam for the treatment of lower respiratory tract infections showed piperacillin/tazobactam to be clinically superior, and in the treatment of skin and soft tissue infections the 2 agents were comparable. For the treatment of intraabdominal infections, piperacillin/tazobactam was at least as effective as imipenem/cilastatin and clindamycin plus gentamicin. Conclusions: The combination of tazobactam with piperacillin results in an antimicrobial agent with enhanced activity against most beta-lactamase–producing organisms. Preliminary data indicate that piperacillin/tazobactam has proven clinical efficacy in the treatment of a variety of infections, especially polymicrobic infections.


2020 ◽  
Vol 4 (2) ◽  
pp. 71-76
Author(s):  
Conny Riana Tjampakasari ◽  
Alya Iranti ◽  
Tjahjani Mirawati Sudiro

Antibiotic resistance is a challenge in medical problems. One prevalence of resistance that tends to expand globally is against ESBL-producing Enterobacteriaceae, a group of bacteria capable of destroying beta-lactam antibiotics. The known ESBL producing bacteria are E. coli and K. pneumoniae. This study aims to compare the sensitivity of quinolone and carbapenem antibiotics to ESBL-producing bacteria based on data obtained from Clinical Microbiology Laboratory, Faculty of Medicine, Universitas Indonesia through 2018-2019. Using the Vitek 2® Compact identification method, the results showed that the prevalence of E. coli and K. pneumoniae ESBL was positive less than 5%. All of the ESBL–producing E. coli came from urine specimens, while ESBLproducing K. pneumoniae came from different types of specimens which are sputum and blood. Most prevalence comes in the age range >50 years with female gender. In general, antibiotic sensitivity to the quinolones was less than 50% against ESBL-producing E. coli. Meanwhile, the sensitivity of carbapenem antibiotics reached 100% both against ESBL-producing E.coli and K.pneumoniae.


Author(s):  
N. Mohammad Sharif ◽  
B. Sreedevi ◽  
R. K. Chaitanya ◽  
Ch. Srilatha

The present study was carried out to characterize beta-lactam resistance in Escherichia coli isolated from healthy and diarrhoeic dogs. A total of 93 E. coli were isolated from the rectal swabs of 136 dogs (60/92 of healthy dogs and 33/44 of diarrhoeic dogs). Predominant serotypes detected include rough (19 isolates), O141 (5), O9 (2), O126 (2), O128 (2), O15, O20, O35, O49, O63, O85, O101, O116, O117, O118, O119 (1 isolate each) and the rest of 52 isolates were untypable (UT). Disc diffusion method revealed resistance to cefotaxime (41.9%), ceftriaxone (34.4%), ceftazidime (30.1%) and aztreonam (18.2%). Overall frequency of extended spectrum beta-lactamase (ESBL) phenotype was found to be 29% (27/93). Beta-lactamase genes detected include blaAmpC (86.0%), blaSHV (30.1%), blaCTX-M group-1 (19.3%), blaTEM (17.2%), blaOXA (13.9%) and blaCTX-M group-2 (7.5%). The study revealed resistance to commonly prescribed beta-lactams, with ESBL phenotype in E. coli of canine origin in Andhra Pradesh, India.


2014 ◽  
Vol 6 (01) ◽  
pp. 007-013 ◽  
Author(s):  
Sridhar PN Rao ◽  
Prasad Subba Rama ◽  
Vishwanath Gurushanthappa ◽  
Radhakrishna Manipura ◽  
Krishna Srinivasan

ABSTRACT Background: There are sporadic reports on detection of extended-spectrum beta-lactamases (ESBL) producers from Karnataka; hence, this is a first multicentric study across Karnataka state to determine the prevalence of ESBL production among clinical isolates of Escherichia coli and Klebsiella pneumoniaei. Aims and objectives: To determine the prevalence of ESBL producing clinical isolates of E. coli and K. pneumoniae from five geographically distributed centers across Karnataka, to study the susceptibility of ESBL producing isolates to other beta-lactam and beta-lactam-beta-lactamase inhibitors and to demonstrate transferability of plasmids coding for ESBL phenotype. Materials and Methods: Two hundred isolates of E. coli and K. pneumoniae each were collected from each of the five centers (Bellary, Dharwad, Davangere, Kolar and Mangalore). They were screened for resistance to screening agents (ceftazidime, cefotaxime, ceftriaxone, aztreonam) and positive isolates were confirmed for ESBL production by test described by Clinical and Laboratory Standards Institute . Co-production of ESBL and AmpC beta-lactamase was identified by using amino-phenylboronic acid disk method. Susceptibility of ESBL producers to beta-lactam antibiotics and beta-lactamase inhibitors was performed. Transferability of plasmids was performed by conjugation experiment. Results: Overall prevalence of ESBL production among E. coli and K. pneumoniae across five centers of the state was 57.5%. ESBL production was found to be 61.4% among E. coli and 46.2% among K. pneumoniae. ESBL production was significantly more among E. coli than K. pneumoniae. Significant variations in distribution of ESBL across the state was observed among E. coli isolates, but not among K. pneumoniae isolates. All ESBL producers demonstrated minimum inhibitory concentration levels ≥2 μg/ml towards cefotaxime, ceftazidime and ceftriaxone. Conclusion: Overall prevalence of ESBL production among clinical isolates of E. coli and K. pneumoniae across Karnataka state was high. The prevalence of ESBL production was significantly higher with E. coli than K. pneumoniae isolates. Higher rates of resistance to ceftriaxone and cefotaxime than to ceftazidime suggests the possibility of presence of CTX-M type ESBLs. Of all the beta-lactam/beta-lactamase inhibitor combinations tested, cefepime-tazobactam demonstrated highest in-vitro activity against ESBL producers. There was no statistical difference in the transferability of plasmids among E. coli and K. pneumoniae.


2015 ◽  
Vol 53 (6) ◽  
pp. 1812-1822 ◽  
Author(s):  
Giorgia Valsesia ◽  
Malgorzata Roos ◽  
Erik C. Böttger ◽  
Michael Hombach

In this study, we introduce a new approach for determination of epidemiologic cutoffs (ECOFFs) and resistant-population cutoffs (RCOFFs) based on receiver operating characteristic (ROC) curves. As an example, the method was applied for determination of ECOFFs for seven different beta-lactam antibiotics and wild-type populations ofEscherichia coli,Klebsiella pneumoniae, andEnterobacter cloacae. In addition, RCOFFs were determined for bacterial populations with defined resistance mechanisms (“resistotypes”), i.e., extended-spectrum beta-lactamase (ESBL)-positiveE. coli, ESBL-positiveK. pneumoniae, and ESBL-positiveE. cloacae; AmpC cephalosporinase-positiveE. coliand AmpC-positiveK. pneumoniae; and broad-spectrum beta-lactamase (BSBL)-positiveE. coli. RCOFFs and ECOFFs are instrumental for a systematic characterization of associations between resistotypes and wild-type populations.


Sign in / Sign up

Export Citation Format

Share Document