scholarly journals Nanoparticles engineered from endophytic fungi (Botryosphaeria rhodina) against ESBL-producing pathogenic multidrug-resistant E. coli

2021 ◽  
Vol 33 (1) ◽  
Author(s):  
Tahira Akther ◽  
S. Ranjani ◽  
S. Hemalatha

Abstract Background ESBLs hydrolyze the beta-lactam ring of antibiotics and are not affected by 1st, 2nd, 3rd, and 4th generation antibiotics. There are over 400 ESBL enzymes that have already been investigated globally are present in Enterobacteriaceae species such as Escherichia coli, Klebsiella pneumoniae and Klebsiella oxytoca strains. Prevalence of ESBLs is slowly increased, from 10 to 40% in E. coli and K. pneumonia strains. Microorganisms producing ESBLs are challenging to physicians, clinical microbiologists, and antibiotic researchers. Results In this study, ESBL-producing strains of E. coli were subjected to antibiotic sensitivity screening. The efficacy of myco BR-AgNPs on growth in E. coli ATCC (25922) and clinical isolates of E. coli was determined by well diffusion method. Myco BR-AgNPs reduced the growth as well as inhibited the biofilm formation in ESBL-producing strains of E. coli. MIC and MBC were determined by using serial microdilution and surface drop method. The MICs were 0.078–0.625 µg/ml and MBCs were 0.312–1.25 µg/ml. The biofilm formation was effectively inhibited by myco BR-AgNPs when compared with control. The expression of CTX-M-15 gene was studied in clinical isolates of E. coli treated with antibiotic (positive control), mycosilver nanoparticles (test) and compared with the other positive control (untreated strains). Interestingly, the expression of CTX-M-15 was downregulated in the samples treated with myco BR-AgNPs. Conclusion The use of myco BR-AgNPs and their growth inhibitory effect on ESBL-positive strains were the main focus of this research. ATCC and ESBL strains used in this study were effectively inhibited by myco BR-AgNPs. The effect of myco BR-AgNPs on the expression of a gene encoding CTX-M-15 was tested on a molecular level, and the observed results showed that the gene expression was reduced when compared with control and antibiotic treatment. According to the current research, myco BR-AgNPs synthesized with the aid of endophytic fungal extract could be used to suppress the growth of ESBL-positive strains of E. coli. Myco BR-AgNPs may be an important alternative to various antibiotics in preventing bacterial resistance if optimized and tested for toxicity.

Author(s):  
Fateme DAVARZANI ◽  
Navid SAIDI ◽  
Saeed BESHARATI ◽  
Horieh SADERI ◽  
Iraj RASOOLI ◽  
...  

Background: Pseudomonas aeruginosa is one of the most common opportunistic bacteria causing nosocomial infections, which has significant resistance to antimicrobial agents. This bacterium is a biofilm and alginate producer. Biofilm increases the bacterial resistance to antibiotics and the immune system. Therefore, the present study was conducted to investigate the biofilm formation, alginate production and antimicrobial resistance patterns in the clinical isolates of P. aeruginosa. Methods: One hundred isolates of P. aeruginosa were collected during the study period (from Dec 2017 to Jul 2018) from different clinical samples of the patients admitted to Milad and Pars Hospitals at Tehran, Iran. Isolates were identified and confirmed by phenotypic and genotypic methods. Antimicrobial susceptibility was specified by the disk diffusion method. Biofilm formation and alginate production were measured by microtiter plate and carbazole assay, respectively. Results: Sixteen isolates were resistant to all the 12 studied antibiotics. Moreover, 31 isolates were MultidrugResistant (MDR). The highest resistance rate was related to ofloxacin (36 isolates) and the least resistance was related to piperacillin-tazobactam (21 isolates). All the isolates could produce the biofilm and alginate. The number of isolates producing strong, medium and weak biofilms was equal to 34, 52, and 14, respectively. Alginate production was more than 400 μg/ml in 39 isolates, 250-400 μg/ml in 51 isolates and less than 250 μg/ml in 10 isolates. Conclusion: High prevalence of MDR, biofilm formation, and alginate production were observed among the clinical isolates of P. aeruginosa. The results also showed a significant relationship between the amount of alginate production and the level of biofilm formation.


2020 ◽  
Vol 23 (6) ◽  
pp. 517-524
Author(s):  
Khayam ul Haq ◽  
Shazia Noreen ◽  
Sheikh A. Sehgal ◽  
Rana A. Tahir ◽  
Amjad Essa ◽  
...  

Background: Escherichia coli various strains can cause alarmingly serious infections. Countries like Pakistan harbour the class of bacteria with one of the highest rates of resistance, but very little has been done to explore their genetic pool. Objectives: This study was designed to find out the frequency of virulence genes of Uropathogenic E. coli and their association with antibiotic resistance along with the evolutionary adaptation of the selected gene through the phylogenetic tree. Methods: Isolates from 120 urinary tract infected patients were collected. Antibiotic sensitivity was detected by the disk diffusion method and DNA extraction was done by the boiling lysis method followed by PCR-based detection of virulence genes. The final results were analysed using the chi-square test. Results: The isolates were found to be least susceptible to nalidixic acid, followed by ampicillin, cotrimoxazole, cefotaxime, ciprofloxacin, aztreonam, amoxicillin, gentamycin, nitrofurantoin and imipenem. The iucC was the most common virulence gene among the resistant isolates. About 86% of the collected samples were found to be multi-drug resistant. Statistical analysis revealed a significant association between the iucC gene and resistance to ampicillin (P=0.03) and amoxicillin (P=0.04), and also between fimH and resistance to aztreonam (P=0.03). Conclusion: This study unravels the uncharted virulence genes of UPEC in our community for the very first time. We report a high frequency of the iucC and fimH virulence genes. This, along with their positive association with resistance to beta-lactam antibiotics in the studied community, indicates their important role in the development of complicated UTIs.


2020 ◽  
Author(s):  
Paul Katongole ◽  
Fatuma Nalubega ◽  
Najjuka Christine Florence ◽  
Benon Asiimwe ◽  
Irene Andia

Abstract Introduction: Uropathogenic E. coli is the leading cause of Urinary tract infections (UTIs), contributing to 80-90% of all community-acquired and 30-50% of all hospital-acquired UTIs. Biofilm forming Uropathogenic E. coli are associated with persistent and chronic inflammation leading to complicated and or recurrent UTIs. Biofilms provide an environment for poor antibiotic penetration and horizontal transfer of virulence genes which favors the development of Multidrug-resistant organisms (MDRO). Understanding biofilm formation and antimicrobial resistance determinants of Uropathogenic E. coli strains will provide insight into the development of treatment options for biofilm-associated UTIs. The aim of this study was to determine the biofilm forming capability, presence of virulence genes and antimicrobial susceptibility pattern of Uropathogenic E. coli isolates in Uganda. Methods: This was a cross-sectional study carried in the Clinical Microbiology and Molecular biology laboratories at the Department of Medical Microbiology, Makerere University College of Health Sciences. We randomly selected 200 Uropathogenic E. coli clinical isolates among the stored isolates collected between January 2018 and December 2018 that had significant bacteriuria (>105 CFU). All isolates were subjected to biofilm detection using the Congo Red Agar method and Antimicrobial susceptibility testing was performed using the Kirby disk diffusion method. The isolates were later subjected PCR for the detection of Urovirulence genes namely; Pap, Fim, Sfa, Afa, Hly and Cnf, using commercially designed primers.Results: In this study, 62.5% (125/200) were positive biofilm formers and 78% (156/200) of these were multi-drug resistant (MDR). The isolates were most resistant to Trimethoprim sulphamethoxazole and Amoxicillin (93%) followed by gentamycin (87%) and the least was imipenem (0.5%). Fim was the most prevalent Urovirulence gene (53.5%) followed by Pap (21%), Sfa (13%), Afa (8%), Cnf (5.5%) and Hyl (0%).Conclusions: We demonstrate a high prevalence of biofilm-forming Uropathogenic E. coli strains that are highly associated with the MDR phenotype. We recommend routine surveillance of antimicrobial resistance and biofilm formation to understand the antibiotics suitable in the management of biofilm-associated UTIs.


2019 ◽  
Author(s):  
Paul Katongole ◽  
Fatuma Nalubega ◽  
Najjuka Christine Florence ◽  
Benon Asiimwe ◽  
Irene Andia

Abstract Introduction: Uropathogenic E. coli is the leading cause of Urinary tract infections (UTIs), contributing to 80-90% of all community-acquired and 30-50% of all hospital-acquired UTIs. Biofilm forming Uropathogenic E. coli are associated with persistent and chronic inflammation leading to complicated and or recurrent UTIs. Biofilms provide an environment for poor antibiotic penetration and horizontal transfer of virulence genes which favors the development of Multidrug-resistant organisms (MDRO). Understanding biofilm formation and antimicrobial resistance determinants of Uropathogenic E. coli strains will provide insight into the development of treatment options for biofilm-associated UTIs. The aim of this study was to determine the prevalence of biofilm formation among Uropathogenic E. coli clinical isolates, their relationship with antimicrobial susceptibility patterns, and Urovirulence genes. Methods: This was a cross-sectional study carried in the Clinical Microbiology and Molecular biology laboratories at the Department of Medical Microbiology, Makerere University College of Health Sciences. We randomly selected 200 Uropathogenic E. coli clinical isolates among the stored isolates collected between January 2018 and December 2018 that had significant bacteriuria (>105 CFU). All isolates were subjected to biofilm detection using the Congo Red Agar method and Antimicrobial susceptibility testing was performed using the Kirby disk diffusion method. The isolates were later subjected PCR for the detection of Urovirulence genes namely; Pap, Fim, Sfa, Afa, Hly and Cnf, using commercially designed primers.Results: In this study, 62.5% (125/200) were positive biofilm formers and 78% (156/200) of these were multi-drug resistant(MDR). The isolates were most resistant to Trimethoprim sulphamethoxazole and Amoxicillin (93%) followed by gentamycin (87%) and the least was imipenem (0.5%). Fim was the most prevalent Urovirulence gene (53.5%) followed by Pap (21%), Sfa (13%), Afa (8%), Cnf (5.5%) and Hyl (0%).Conclusions: We demonstrate a high prevalence of biofilm-forming Uropathogenic E. coli strains that are highly associated with the MDR phenotype. We recommend routine surveillance of antimicrobial resistance and biofilm formation to understand the antibiotics suitable in the management of biofilm-associated UTIs.


2021 ◽  
Vol 29 (1) ◽  
pp. 18
Author(s):  
Shiwi Linggarjati ◽  
Dita Diana Parti ◽  
Elly Nurus Sakinah

Objectives: To identify the sensitivity of antibiotics to pathogenic bacteria that cause Bacterial Vaginosis (BV).Materials and Methods: This type of research was an observational study with a sample of six specimens. The data were taken using primary data from patients who were swabbed in the vagina and then diagnosed BV with amsel criteria on vaginal secretion specimens carried out at Tanggul health center on January 23-February 23, 2020. The specimens were sent to Parahita Clinical Laboratory for bacterial identification and adjusted for sensitivity with CLSI using vitek 2 compact tool.Results: The results of this study identified the bacteria that caused bacterial vaginosis, the E. coli and K. pneumoniae with one sample of suspected ESBL. ESBL is a beta lactamase enzyme produced by bacteria and can induce bacterial resistance to penicillin, cephalosporin generation 1, 2, and 3. The types of bacteria found were E. coli and K. pneumoniae with high sensitivity antibiotics tested including piperacillin/tazobactam, ceftazidime, cefepime, ertapenem, meropenem, amikacin, gentamicin, tigecycline, and nitrofurantoin. Antibiotics with high levels of resistance tested against these bacteria included: ampicillin, amoxicillin, and ampicillin/sulbactam due to the mechanism of beta-lactam antibiotic resistance in the production of beta lactamase from bacteria.Conclusion: The type of bacteria found was E. coli and K. pneumoniae with high resistance levels in beta lactam antibiotics. 


2021 ◽  
pp. 088391152110142
Author(s):  
Velu Gomathy ◽  
Venkatesan Manigandan ◽  
Narasimman Vignesh ◽  
Aavula Thabitha ◽  
Ramachandran Saravanan

Biofilms play a key role in infectious diseases, as they may form on the surface and persist after treatment with various antimicrobial agents. The Staphylococcus aureus, Klebsiella pneumoniae, S. typhimurium, P. aeruginosa, and Escherichia coli most frequently associated with medical devices. Chitosan sulphate from marine litter (SCH-MW) was extracted and the mineral components were determined using atomic absorption spectroscopy (AAS). The degree of deacetylation (DA) of SCH was predicted 50% and 33.3% in crab and shrimp waste respectively. The elucidation of the structure of the SCH-MW was portrayed using FT-IR and 1H-NMR spectroscopy. The molecular mass of SCH-MW was determined with Matrix-Assisted Laser Desorption/Ionization-Time of Flight (MALDI-TOF). The teratogenicity of SCH-MW was characterized by the zebrafish embryo (ZFE) model. Antimicrobial activity of SCH-MW was tested with the agar well diffusion method; the inhibitory effect of SCH-MW on biofilm formation was assessed in 96 flat well polystyrene plates. The result revealed that a low concentration of crab-sulfated chitosan inhibited bacterial growth and significantly reduced the anti-biofilm activity of gram-negative and gram-positive bacteria relatively to shrimp. It is potentially against the biofilm formation of pathogenic bacteria.


Author(s):  
Rustini Rustini ◽  
Jamsari Jamsari ◽  
Marlina Marlina ◽  
Nasrul Zubir ◽  
Yori Yuliandra

Objectives: Pseudomonas aeruginosa is an opportunistic pathogen that has an innate resistance to some antibiotics. This bacterium is one of the mostcommon causes of nosocomial infections that include surgical wound infections, burns, and urinary tract infections. The bacteria have been reportedlyresistant to many antibiotics and have developed multidrug resistance (MDR). The objective of the study was to determine the resistance pattern ofP. aeruginosa isolated from clinical samples of patients against some major antibiotics.Methods: Isolates of P. aeruginosa were obtained from clinical sample of urine, sputum, swabs, pus, feces, and blood and cultured in cetrimide agar. P.aeruginosa ATCC 27853 was used as a positive control. The antibacterial susceptibility testing was conducted against 13 antibiotics: Ceftazidime, cefotaxime,ceftriaxone, cefoperazone, ciprofloxacin, levofloxacin, ofloxacin, gentamicin, amikacin, piperacillin, ticarcillin, meropenem, and imipenem. The examinationwas carried out using agar diffusion method of Kirby-Bauer and following the standards from Clinical and Laboratory Standards Institute (CLSI).Results: The results showed that bacterial resistance was established against all tested antibiotics. The highest number of resistance was shownagainst ceftriaxone (44.21%), whereas the most susceptibility was exhibited against amikacin (only 9.47% of resistance). MDR P. aeruginosa (MDRPA)was detected on almost all clinical samples tested, except the feces. The sample with the highest percentage of MDRPA was the pus.Conclusion: The study concludes that the most effective antibiotic against P. aeruginosa is amikacin (91.51%), whereas the most resistance is exhibited to ceftriaxone (43.16%).


2021 ◽  
Vol 8 ◽  
Author(s):  
Nurul Asyiqin Haulisah ◽  
Latiffah Hassan ◽  
Siti Khairani Bejo ◽  
Saleh Mohammed Jajere ◽  
Nur Indah Ahmad

Overuse of antimicrobials in livestock health and production beyond therapeutic needs has been highlighted in recent years as one of the major risk factors for the acceleration of antimicrobial resistance (AMR) of bacteria in both humans and animals. While there is an abundance of reports on AMR in clinical isolates from humans, information regarding the patterns of resistance in clinical isolates from animals is scarce. Hence, a situational analysis of AMR based on clinical isolates from a veterinary diagnostic laboratory was performed to examine the extent and patterns of resistance demonstrated by isolates from diseased food animals. Between 2015 and 2017, 241 cases of diseased livestock were received. Clinical specimens from ruminants (cattle, goats and sheep), and non-ruminants (pigs and chicken) were received for culture and sensitivity testing. A total of 701 isolates were recovered from these specimens. From ruminants, Escherichia coli (n = 77, 19.3%) predominated, followed by Staphylococcus aureus (n = 73, 18.3%). Antibiotic sensitivity testing (AST) revealed that E. coli resistance was highest for penicillin, streptomycin, and neomycin (77–93%). In addition, S. aureus was highly resistant to neomycin, followed by streptomycin and ampicillin (68–82%). More than 67% of E. coli isolates were multi-drug resistant (MDR) and only 2.6% were susceptible to all the tested antibiotics. Similarly, 65.6% of S. aureus isolates were MDR and only 5.5% were susceptible to all tested antibiotics. From non-ruminants, a total of 301 isolates were recovered. Escherichia coli (n = 108, 35.9%) and Staphylococcus spp. (n = 27, 9%) were the most frequent isolates obtained. For E. coli, the highest resistance was against amoxicillin, erythromycin, tetracycline, and neomycin (95–100%). Staphylococcus spp. had a high level of resistance to streptomycin, trimethoprim/sulfamethoxazole, tetracycline and gentamicin (80–100%). The MDR levels of E. coli and Staphylococcus spp. isolates from non-ruminants were 72.2 and 74.1%, respectively. Significantly higher resistance level were observed among isolates from non-ruminants compared to ruminants for tetracycline, amoxicillin, enrofloxacin, and trimethoprim/sulfamethoxazole.


2010 ◽  
Vol 4 (04) ◽  
pp. 239-242 ◽  
Author(s):  
Supriya Upadhyay ◽  
Malay Ranjan Sen ◽  
Amitabha Bhattacharjee

Introduction: Infections caused by Pseudomonas aeruginosa are difficult to treat as the majority of isolates exhibit varying degrees of beta-lactamase mediated resistance to most of the beta-lactam antibiotics. It is also not unusual to find a single isolate that expresses multiple β-lactamase enzymes, further complicating the treatment options. Thus the present study was designed to investigate the coexistence of different beta-lactamase enzymes in clinical isolates of P. aeruginosa. Methodology: A total of 202 clinical isolates of P. aeruginosa were tested for the presence of AmpC beta-lactamase, extended spectrum beta-lactamase (ESBL) and metallo beta-lactamase (MBL) enzyme. Detection of AmpC beta-lactamase was performed by disk antagonism test and a modified three-dimensional method, whereas detection of ESBL was done by the combined disk diffusion method per Clinical and Laboratory Standards Institute (CLSI) guidelines and MBL were detected by the Imipenem EDTA disk potentiation test. Results: A total of 120 (59.4%) isolates were confirmed to be positive for AmpC beta-lactamase. Among them, 14 strains (7%) were inducible AmpC producers. Co-production of AmpC along with extended spectrum beta-lactamase and metallo beta-lactamase was reported in 3.3% and 46.6% isolates respectively. Conclusion: The study emphasizes the high prevalence of multidrug resistant P. aeruginosa producing beta-lactamase enzymes of diverse mechanisms. Thus proper antibiotic policy and measures to restrict the indiscriminative use of cephalosporins and carbapenems should be taken to minimize the emergence of this multiple beta-lactamase producing pathogens.


2021 ◽  
Vol 24 (2) ◽  
Author(s):  
Bernard Oluwapelumi Oluboyo ◽  
Maihankali J Charles ◽  
Richard Akele ◽  
Funmilayo Akinseye ◽  
Adeola Oluboyo

Objetive: Manufacturers of toothpastes claim that their products are active against oral microbiome capable of causing tooth decay. The objective of this study was to investigate the manufacturers’ claim using some of the toothpaste products sold in Ado-Ekiti, Nigeria. Material and methods: The antibacterial potentials of five commercialized toothpaste products (designated sodium fluoride-zinc sulphate, benzyl alcohol-sodium fluorophosphate, sodium fluoride-eugenol, sodium fluoridesodium laurylsulfate and sodium fluoridepotassium nitrate) were tested against six oral isolates of dental caries and periodontal origin – Staphylococcus aureus, Streptococcus mitis, Streptococcus salivarius, Streptococcus pyogenes and Pseudomonas aeruginosa. The antimicrobial potentials were evaluated using modified agar well diffusion method. Various dilutions of the toothpaste products from 1:1 to 1:16 were tested against each test microorganism. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the toothpastes were determined. Results: sodium fluoride-zinc sulphate, benzyl alcoholsodium fluorophosphate and sodium fluorideeugenol toothpastes showed inhibitory effects on S. aureus, S. mitis and S. salivarius. Sodium fluoride-sodium laurylsulfate and sodium fluoride-potassium nitrate toothpastes showed no inhibitory effect on the organisms except S. pyogenes. Only sodium fluoride-potassium nitrate toothpaste inhibited E. coli while none of the toothpastes inhibited P. aeruginosa. The MIC and MBC of sodium fluoride-zinc sulphate, benzyl alcohol-sodium fluorophosphate, and sodium fluoride-eugenol toothpastes showed bacteriostatic and bactericidal effects on the organisms. Sodium fluoride-zinc sulphate, benzyl alcohol-sodium fluorophosphate, and sodium fluoride-eugenol toothpastes showed comparable effects on S. aureus, S. mitis and S. salivarius. Sodium fluoride-eugenol toothpaste was strongest against S. mitis, benzyl alcoholsodium fluorophosphates toothpaste was strongest against S. pyogenes, sodium fluoridezinc sulphate toothpaste was strongest against S. salivarius and only sodium fluoride-potassium nitrate toothpaste inhibited E. coli. Conclusion: The manufacturer’s claim is upheld by this study for sodium fluoride-zinc sulphate, benzyl alcohol-sodium fluorophosphate and sodium fluoride-eugenol toothpastes. However, sodium fluoride-sodium laurylsulfate and sodium fluoride-potassium nitrate toothpastes showed limited inhibitory potentials.     Keywords Antibacterial; Caries; Oral isolates; Periodontitis; Toothpastes.


Sign in / Sign up

Export Citation Format

Share Document