scholarly journals REMOVAL OF BERYLLIUM (Be2+) FROM WATER SAMPLES BY SORPTION PROCESS: A REVIEW

Author(s):  
Özgür Arar

Beryllium (Be2+) is an important industrial metal because of its unusual material properties: it is lighter than aluminium and six times stronger than steel. Beryllium is a strategic metal due to its low density combined with its strength, low neutron absorption, high melting point and high modulus of elasticity. Beryllium is often alloyed with other metals such as copper and is an important component of materials used in the aerospace, automotive, energy, defense, medical, and electronics industries. However, beryllium and its compounds are very toxic, especially to the lungs, skin, and eyes. Beryllium compounds are known carcinogens based on sufficient evidence of carcinogenicity in humans from human studies. Toxic effects of beryllium include immunotoxic, allergic, mutagenic, and carcinogenic effects. Mammalian tissues do not excrete it, so the effects are cumulative and can lead to death at high concentrations. Therefore, removal of Be2+ is important. In this review, the removal of Be2+ from water samples by sorption processes using different sorbents was summarized. The effects of process parameters on the removal of Be2+ have been summarized. The work discussed showed that ion exchange resins, various modified biosorbents metal oxides can be used for the removal of Be2+. The results showed that the pH of the solution has an important effect on the removal rate. Sorption kinetics vary from 3 minutes to 48h. When the functional groups are on the surface of the sorbent, the sorption process is rapid. However, if the surface of the sorbent is covered with oxides such as magnetite, it takes longer to reach equilibrium. Published work shows that more than 99 % of Be2+ can be removed from solution.

2021 ◽  
Vol 11 (14) ◽  
pp. 6592
Author(s):  
Ana Moldovan ◽  
Maria-Alexandra Hoaghia ◽  
Anamaria Iulia Török ◽  
Marius Roman ◽  
Ionut Cornel Mirea ◽  
...  

This study aims to investigate the quality and vulnerability of surface water (Aries River catchment) in order to identify the impact of past mining activities. For this purpose, the pollution and water quality indices, Piper and Durov plots, as well vulnerability modeling maps were used. The obtained results indicate that the water samples were contaminated with As, Fe, Mn, Pb and have relatively high concentrations of SO42−, HCO3−, TDS, Ca, K, Mg and high values for the electrical conductivity. Possible sources of the high content of chemicals could be the natural processes or the inputs of the mine drainage. Generally, according to the pollution indices, which were correlated to high concentrations of heavy metals, especially with Pb, Fe and Mn, the water samples were characterized by heavy metals pollution. The water quality index classified the studied water samples into five different classes of quality, namely: unsuitable for drinking, poor, medium, good and excellent quality. Similarly, medium, high and very high vulnerability classes were observed. The Durov and Piper plots classified the waters into Mg-HCO3− and Ca-Cl− types. The past and present mining activities clearly change the water chemistry and alter the quality of the Aries River, with the water requiring specific treatments before use.


2017 ◽  
Vol 36 (3-4) ◽  
pp. 857-871 ◽  
Author(s):  
Chao Xue ◽  
Peishi Qi ◽  
Yunzhi Liu

Batch experiments were conducted to investigate the capacity and mechanisms for adsorbing Cd2+ from aqueous solutions by the composite material. The composite material was manufactured with Plesiomonas shigelloides strain H5 and modified polyacrylonitrile-based carbon fiber. Experimental results showed that the surface areas of modified polyacrylonitrile-based carbon fiber increased by 58.54% and pore width increased by 40.19% compared with unmodified polyacrylonitrile-based carbon fiber. Boehm’s titration results show the surface acid sites of composite material were increased by 712% compared with unmodified polyacrylonitrile-based carbon fiber. The field emission scanning electron microscope results show P. shigelloides H5 can be grown on the surface of modified polyacrylonitrile-based carbon fiber closely. The equilibrium removal rate and sorption quantity of composite material were 71.56% and 7.126 mg g−1, respectively. With the pH value of aqueous solution increased, the removal rate of Cd2+ ions was also increased, but the change of temperature and ionic strength had no significant effect on the removal rate. Furthermore, the results showed the whole sorption process was a good fit to Lagergren pseudo-second-order model and Freundlich isotherms model. Therefore, the results infer that there was a heterogeneous distribution of active sites, and then the sorption process was chemical adsorption and multilayer adsorption. In a word, microbial composite carbon fiber material can adsorb Cd2+ ions from aqueous solution effectively, which might be helpful in wastewater treatment in the future.


2008 ◽  
Vol 26 (9) ◽  
pp. 693-703 ◽  
Author(s):  
P. Senthil Kumar ◽  
K. Kirthika ◽  
K. Sathish Kumar

The removal of hexavalent chromium, Cr(VI), from aqueous solutions under different conditions using an anion-exchange resin (AXR) as an adsorbent was investigated under batch conditions. Such studies indicated that the percentage adsorption decreased with increasing initial Cr(VI) concentration, with the maximum removal of such ions occurred at a pH value of ca. 2.0. Both the Langmuir and Freundlich isotherm models were capable of reproducing the isotherms obtained experimentally. The sorption process was rapid during the first 20 min with equilibrium being attained within 30 min. The process followed first-order kinetics. The results demonstrate that such anion-exchange resins can be used for the efficient removal of Cr(VI) ions from water and wastewater.


2020 ◽  
Vol 10 (7) ◽  
pp. 2479
Author(s):  
Darío Rafael Olicón-Hernández ◽  
Maite Ortúzar ◽  
Clementina Pozo ◽  
Jesús González-López ◽  
Elisabet Aranda

Non-steroidal anti-inflammatory drugs (NSAIDs) and analgesics are two of the most employed drug groups around the world due to their use in the treatment of edema and pain. However, they also present an ecological challenge because they are considered as potential water pollutants. In this work, the biodegradation of four NSAIDs (diclofenac, ibuprofen, naproxen and ketoprofen) and one analgesic (acetaminophen) at 50 µM (initial concentration) by Penicillium oxalicum, at both flask and bioreactor bench scales, was evaluated. An important co-metabolic mechanism as part of the global bioremediation process for the elimination of these drugs was observed, as in some cases it was necessary to supplement glucose to achieve a 100% removal rate: both individually and as a complex mixture. Identical behavior in the implementation of a fluidized bench-scale batch bioreactor, inoculated with pellets of this fungus and the complex mix of the drugs, was observed. The role of the cytochrome P450 enzymes (CYP) in the biodegradation of the drugs mix were evidenced by the observation of hydroxylated by-products. The results on the reduction of toxicity (micro and phyto) were not conclusive; however, a reduction in phytotoxicity was detected.


Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 392 ◽  
Author(s):  
Sabir Nurtazin ◽  
Steven Pueppke ◽  
Temirkhan Ospan ◽  
Azamat Mukhitdinov ◽  
Timur Elebessov

The thinly populated Balkhash District of Kazakhstan’s Almaty Region lies in the lower reaches of the Ili-Balkhash basin, which is shared by China and Kazakhstan. The district is arid and heavily dependent on inflows of surface water, which are threatened by the effects of upstream population growth, economic development, and climate change. The quality of drinking water from centralized water systems and tube wells in nine villages of the district was analyzed, and the organoleptic properties of water from these sources was also assessed by an expert and via surveys of local residents. Although most samples met governmental standards for the absence of chemical impurities, high concentrations of mineralization, chlorides, boron, iron, and/or uranium were present in some well water samples. Levels of these pollutants were as much as 4-fold higher than governmental maxima and as much as 16-fold higher than concentrations reported previously in surface water. All centralized water samples met standards for absence of microbial contamination, but total microbial counts in some well water samples exceeded standards. Organoleptic standards were met by all the water from five villages, but centralized water from one village and well water from four villages failed to meet standards based on expert judgment. Residents were, for the most part, more satisfied with centralized rather than well water, but there was no obvious relationship between the failure of water to meet standards and the locations or populations of the settlements. This is the first comprehensive assessment of groundwater used for drinking in the lower Ili-Balkhash basin, and although it relies on a limited number of samples, it nevertheless provides evidence of potentially serious groundwater contamination in the Balkhash District. It is thus imperative that additional and more detailed studies be undertaken.


2010 ◽  
Vol 37 (11) ◽  
pp. 1492-1504
Author(s):  
Mamata Sharma ◽  
Nihar Biswas

Sulfate (1500 mg/L) reduction and glucose (1870 mg/L) degradation was examined in the presence of five varying linoleic acid (LA) levels (100–1000 mg/L) at 37 ± 2 °C and pH 7.0–7.2. The sulfate reduction and methane formation data suggest that LA selectively inhibited methane producing bacteria (MPB). The quantity of sulfate removed increased with increasing LA dosage. Approximately 1375 mg/L (92%) sulfate was removed in cultures fed with high concentrations of LA (1000 mg/L), which was 68% more than that removed in glucose and sulfate controls. The quantity of sulfate removed in cultures fed with 100, 300, 500 and 700 mg/L LA were 62%, 66%, 77%, and 84%, respectively. Initial sulfate degradation rates increased with increasing LA levels in the cultures. High LA levels (1000 mg/L) attributed to approximately a sevenfold increase in the initial sulfate degradation rates compared to cultures containing sulfate plus glucose. The highest initial sulfate removal rate (0.19 µg/(mgVSS min)) was observed in cultures receiving 1000 mg/L LA. Initial glucose degradation rates decreased with increasing LA concentrations. The rates for the cultures receiving 1000 mg/L LA were 2.53 µg/(mgVSS min) while the degradation rate for cultures containing 100 mg/L LA was 5.40 µg/(mgVSS min). Methane formation decreased when sulfate and LA were added. Methane formation was lowest in cultures receiving elevated LA concentrations. The percent electron flow fluxes increased towards sulfidogenesis and decreased towards methanogenesis with increasing LA levels. Less than 0.6% electron flow was diverted to methanogenesis in cultures containing high levels of LA (≥700 mg/L) while ≤ 45% was diverted to sulfidogenesis. Acetate and propionate were the major volatile fatty acids (VFAs) detected during glucose degradation. The amount of sulfate reduced in the cultures receiving only LA or sulfate and no other carbon source was comparable (approximately 10%), which suggests that LA did not contribute to electrons during the course of experiment for sulfate reduction.


2010 ◽  
Vol 160-162 ◽  
pp. 1611-1616
Author(s):  
Yan Ping Liu ◽  
Hua Bin Xu ◽  
Yi Bing Deng

Electrospinning is a convenient method used in the preparation of ultrafine oil sorptive fibers based on Ethylene-propylene-diene (EPDM), Electrospun fiber diameter, varying in large from micrometer to nanometer, mainly depends upon the solution concentration, which has great influence on this function fiber’s sorption ability. The non-linear relation between mean fiber diameter (d) and solution concentration (C) was investigated and it follows a simple scaling law in the form . This relationship can be used to predict the target fiber diameter and guide the processing technique. The effects of various C on oil sorption ability were investigated in a batch-sorption technique. A comparison of the kinetic models, showed that the removal rate fit the first order kinetic model well, which suggested the sorption process is rapid, can reach equilibrium within a short time.


Author(s):  
Eleonora Sočo ◽  
Jan Kalembkiewicz

Abstract The activated coal fly ash (FA) treated with NaOH and hexadecyltrimethylammonium bromide (HDTMABr) was used as adsorbent for removal of cadmium(II) ions and rhodamine B (RB) form an aqueous solution. Characterization of FA and FA-HDTMABr were done by using Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The sorption equilibrium in the system were analysed by isotherm models, such as Freundlich, Langmuir, generalized Langmiur-Freundlich, Redlich-Peterson, Jovanović, extended Jovanović, Tóth, Fumkin-Fowler-Guggenheim, Fowler-Guggenheim-Jovanović-Freundlich, Temkin, Dubinin-Radushkevich, Halsey, Brunauer Emmett and Teller. The evaluation of fitting of the isotherms studied experimentally points was carried out by means of the reduced chi-square test and the coefficient of determination. The maximum monolayer adsorption capacity of the FA-HDTMABr was found to be 744 mg·g−1 and 666 mg·g−1 for Cd(II) and RB, respectively. The PFO, PSO, Elovich mass transfer, liquid film diffusion and intra-particle diffusion models were analysed. Sorption kinetics data were well fitted by PSO model. The Elovich and intra-particle model also revealed that there are two separate stages in the sorption process, namely, the external diffusion and the inter-particle diffusion.


Author(s):  
Goutam Kumar Bose ◽  
Pritam Pain

In the present research work four different work materials viz. EN24, D2, H13, P20 which are commonly use in plastic industries are considered for machining applying EDM process. Four different control parameters such as pulse on time, pulse off time, gap current, and Spark gap are considered to study the effect on the performance of responses like material removal rate, surface roughness and overcut using a square shape copper tool with lateral flushing. A well design experimental plan is used to reduce the total number of experiment following L9 orthogonal array. Based on Taguchi methodology the significant process parameters affecting the responses are identified applying ANOVA for each material. The effect of the responses with respect to the four control parameters for the four different work materials is compared through linear graphs. A well-known Grey relational analysis is carried out where the weights are calculated using entropy method to full fill the multi criteria decision making process.


Sign in / Sign up

Export Citation Format

Share Document