scholarly journals Optimization of the cutting planning process in cardboard and paper production

Author(s):  
Olga Sanginova ◽  
Pavlo Kozlov

Improving the production efficiency is one of the main management tasks for the pulp and paper industry. This can be achieved through the use of automated planning systems, designed to take into account the features and limitations of particular production. Such systems allow, on the basis of orders received from consumers, a voluminous production schedule to be made to take into account the needs for raw materials, the productivity of paper or cardboard machines, and the optimal cutting of the canvas on longitudinal cutting machines. Linear programming method for solving optimization problems. Computer simulation using optimized packages to compare the results with the options used in production. Cutting planning processes were optimized on the basis of standard orders for rolled products of an enterprise in the Kyiv region. The problem of optimizing the cutting planning process and criteria for increasing the production efficiency is formalized. The target function is to increase the profit of production by minimizing material losses in planning the cutting of the master rill and minimizing the storage of related products in production warehouses. To solve the optimization problem, it is proposed to use our own method of calculating the optimal cutting patterns for the manufacture of finished products on a longitudinal cutting machine. The MS Office SOLVER package was used for the calculations. Different cutting options were compared via the target function. Important criteria for this inspection are the fulfillment of the entire order, the availability and storage of related products outside the order, and the minimization of time for the reconfiguration of machines. Longitudinal cutting machines of this production can be adjusted only manually, and it takes a long time. Also, technological restrictions on the allowable width of the edge are an important requirement for cutting patterns. All patterns that do not meet these restrictions cannot be compared. There are three options for comparison. An option is made according to the proposed method and with an optimization package using the Simplex method and a number of technological limitations inherent in this production. An option is selected by the production planner manually taking into account previous experience. And the variant of cutting orders is made by the production management system, which accompanies the process of planning and transfer of tasks for longitudinal cutting machines. The function takes the maximum value in the option offered by the production scheduler. But this option is not optimal, because a person adds rolls to the satellite to improve the cutting map to fulfill all orders. This in turn leads to overfulfillment of orders and production of additional products in a warehouse where they can be stored for years until the expiration date. The option offered by the automotive system does not require the use of accompanying rolls but unfortunately does not meet the requirements for optimal cutting of the material. Automatic cutting leaves a large edge that is already within the maximum allowable limitations of the machines and, moreover, does not lead to the execution of the entire order. This violates the basic requirement for production such as full execution of the order. Therefore, this option cannot be used either. The optimal cut for profit maximization is the option obtained using the roll planning technique. This technique allows the average weight of the roll to be obtained through the use of production history. The estimated weight is used to convert the order from tons to the number of pieces. Cutting patterns for the production of the order in this way are presented and, taking into account the technological limitations of production, can be calculated on the basis of the Simplex method in optimization packages. Such cutting patterns have no satellites and allow the fulfilment of all orders. The roll planning technique reduces the number of clippings and avoids overproduction. The analysed cutting plans show that the use of satellites reduces the profitability of the enterprise and does not always minimize material costs.

2021 ◽  
Vol 14 (1) ◽  
pp. 40-47
Author(s):  
Tatуana Ivanovna LOMACHENKO ◽  

Nowadays, there is no consensus that digitalization is a threat to business security or an opportunity to comprehensively manage the entire chain of business processes in real time, taking into account incoming data from all assets. However, political and economic instability, demand volatility, and competition are all a set of global challenges that digital transformation has responded to. In industry, the competitive advantage has become not the ownership of the enterprise, the firm, but access to digital technology, on which the efficiency of work with specific resources depends. The processes of forming individual business segments related to production management based on modern digital technology have already been launched and most companies are focused on this direction. The article reveals the features of the evolutionary stage of digital economy development, presents the relationship of this process with the formation of the conceptual framework from the theoretical foundations, substantiated in the 1990s by foreign and domestic scientists to modern approaches in the interpretation of digital economy definitions. The article proposes the structural dynamics of the digital economy in today's realities, revealing internal problems, opportunities for economic growth, maturity and readiness of the state to new ways of doing business in the digital economy and digital transformation, to form the country's national strategy. In addition, the conditions under which digital transformation opens up new opportunities for the business environment, the public sector and society as a whole are presented. Changes in business strategy, organizational forms, business process capabilities, new approaches in working with clients, competitive advantages, increase in profit sources are analyzed. As a result, the efficiency of the whole system increases, which allows to reach a fundamentally new level of production efficiency in a short time.


Author(s):  
Ali Kaveh ◽  
S.R. Hoseini Vaez ◽  
Pedram Hosseini

In this study, the Modified Dolphin Monitoring (MDM) operator is used to enhance the performance of some metaheuristic algorithms. The MDM is a recently presented operator that controls the population dispersion in each iteration. Algorithms are selected from some well-established algorithms. Here, this operator is applied on Differential Evolution (DE), Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Vibrating Particles System (VPS), Enhanced Vibrating Particles System (EVPS), Colliding Bodied Optimization (CBO) and Harmony Search (HS) and the performance of these algorithms are evaluated with and without this operator on three well-known structural optimization problems. The results show the performance of this operator on these algorithms for the best, the worst, average and average weight of the first quarter of answers.


2018 ◽  
Vol 18 (1) ◽  
pp. 13
Author(s):  
Yulia Dewi Regita ◽  
Kiswara Agung Santoso ◽  
Ahmad Kamsyakawuni

Optimization problems are often found in everyday life, such as when determining goods to be a limited storage media. This causes the need for the selection of goods in order to obtain profits with the requirements met. This problem in mathematics is usually called a knapsack. Knapsack problem itself has several variations, in this study knapsack type used is multiple constraints knapsack 0-1 which is solved using the Elephant Herding Optimization (EHO) algorithm. The aim of this study is to obtain an optimal solution and study the effectiveness of the algorithm comparing it to the Simplex method in Microsoft Excel. This study uses two data, consisting of primary and secondary data. Based on the results of parameter testing, the proven parameters are nClan, nCi,α,β and MaxGen have a significant effect. The final simulation results have also shown a comparison of the EHO algorithm with the Simplex method having a very small percentage deviation. This shows that the EHO algorithm is effective for completing optimization multiple constraints knapsack 0-1. Keywords: EHO Algorithm, Multiple Constraints Knapsack 0-1 Problem.


2017 ◽  
Vol 7 (1) ◽  
pp. 137-150
Author(s):  
Агапов ◽  
Aleksandr Agapov

For the first time the mathematical model of task optimization for this scheme of cutting logs, including the objective function and six equations of connection. The article discusses Pythagorean area of the logs. Therefore, the target function is represented as the sum of the cross-sectional areas of edging boards. Equation of the relationship represents the relationship of the diameter of the logs in the vertex end with the size of the resulting edging boards. This relationship is described through the use of the Pythagorean Theorem. Such a representation of the mathematical model of optimization task is considered a classic one. However, the solution of this mathematical model by the classic method is proved to be problematic. For the solution of the mathematical model we used the method of Lagrange multipliers. Solution algorithm to determine the optimal dimensions of the beams and side edging boards taking into account the width of cut is suggested. Using a numerical method, optimal dimensions of the beams and planks are determined, in which the objective function takes the maximum value. It turned out that with the increase of the width of the cut, thickness of the beam increases and the dimensions of the side edging boards reduce. Dimensions of the extreme side planks to increase the width of cut is reduced to a greater extent than the side boards, which are located closer to the center of the log. The algorithm for solving the optimization problem is recommended to use for calculation and preparation of sawing schedule in the design and operation of sawmill lines for timber production. When using the proposed algorithm for solving the optimization problem the output of lumber can be increased to 3-5 %.


2020 ◽  
Vol 3 (1) ◽  
pp. 27-40
Author(s):  
Pria Tubagus ◽  
Saharuddin Kaseng ◽  
Asngadi Asngadi

Basically, the purpose of production management is directed to create production efficiency and effectiveness to improve the results and contribute to the maximum profit achievement of the company. One of the problems in production management that influences the efficiency and effectiveness of production is layout arrangement of production facilities. This research is conducted through direct observation in Banana Chips Company ‘Cahaya Indi’ located in Donggala District. The type of research is quantitative using line balancing method and travel chart. The result of the line balancing method shows the efficiency of banana chips production process is 90,73% with idle time of 9,27%. While the result of travel chart method indicates a new layout design of banana chips production facility at Cahaya Indi is more effective with material flow load of 198,83 from the initial layout of 259,93. Pada dasarnya, tujuan manajemen produksi selalu diarahkan pada terciptanya efisiensi dan efektifitas produksi, agar dapat meningkatkan hasil produksi serta memberikan konstribusi yang maksimal terhadap laba perusahaan. Salah satu permasalahan manajemen produksi yang berpengaruh terhadap efisiensi dan efektifitas produksi adalah pengaturan tata letak (layout) fasilitas produksi. Penelitian ini dilakukan dengan cara observasi langsung pada Cahaya Indi yang bertempat di Kabupaten Donggala. Jenis penelitian yang diguanakan adalah penelitian kuantitatif dengan menggunakan metode line balancing dan travel chart. Hasil penelitian dengan menggunakan metode line balancing diperoleh efisiensi dari proses produksi kripik pisang sebesar 90,73% dengan waktu menganggur 9,27%. Sedangkan hasil dari metode travel chart diperoleh rancangan baru tata letak fasilitas produksi kripik pisang pada Cahaya Indi yang lebih efektif sebesar 198,83 beban aliran bahan dari tata letak mula-mula sebesar 259,93 beban aliran bahan.


2021 ◽  
Author(s):  
Qasem Dashti ◽  
Saad Matar ◽  
Hanan Abdulrazzaq ◽  
Nouf Al-Shammari ◽  
Francy Franco ◽  
...  

Abstract A network modeling campaign for 15 surface gathering centers involving more than 1800 completion strings has helped to lay out different risks on the existing surface pipeline network facility and improved the screening of different business and action plans for the South East Kuwait (SEK) asset of Kuwait Oil Company. Well and network hydraulic models were created and calibrated to support engineers from field development, planning, and operations teams in evaluating the hydraulics of the production system for the identification of flow assurance problems and system optimization opportunities. Steady-state hydraulic models allowed the analysis of the integrated wells and surface network under multiple operational scenarios, providing an important input to improve the planning and decision-making process. The focus of this study was not only in obtaining an accurate representation of the physical dimension of well and surface network elements, but also in creating a tool that includes standard analytical workflows able to evaluate wells and surface network behavior, thus useful to provide insightful predictive capability and answering the business needs on maintaining oil production and controlling unwanted fluids such as water and gas. For this reason, the model needs to be flexible enough in covering different network operating conditions. With the hydraulic models, the evaluation and diagnosis of the asset for operational problems at well and network level will be faster and more effective, providing reliable solutions in the short- and long-terms. The hydraulic models enable engineers to investigate multiple scenarios to identify constraints and improve the operations performance and the planning process in SEK, with a focus on optimal operational parameters to establish effective wells drawdown, evaluation of artificial lifting requirements, optimal well segregation on gathering centers headers, identification of flow assurance problems and supporting production forecasts to ensure effective production management.


Author(s):  
Pandian M. Vasant

Many engineering, science, information technology and management optimization problems can be considered as non linear programming real world problems where the all or some of the parameters and variables involved are uncertain in nature. These can only be quantified using intelligent computational techniques such as evolutionary computation and fuzzy logic. The main objective of this research chapter is to solve non linear fuzzy optimization problem where the technological coefficient in the constraints involved are fuzzy numbers which was represented by logistic membership functions by using hybrid evolutionary optimization approach. To explore the applicability of the present study a numerical example is considered to determine the production planning for the decision variables and profit of the company.


2020 ◽  
Vol 4 (3-4) ◽  
pp. 127-140 ◽  
Author(s):  
Ryan Luke Johns ◽  
Martin Wermelinger ◽  
Ruben Mascaro ◽  
Dominic Jud ◽  
Fabio Gramazio ◽  
...  

AbstractOn-site robotic construction not only has the potential to enable architectural assemblies that exceed the size and complexity practical with laboratory-based prefabrication methods, but also offers the opportunity to leverage context-specific, locally sourced materials that are inexpensive, abundant, and low in embodied energy. We introduce a process for constructing dry stone walls in situ, facilitated by a customized autonomous hydraulic excavator. Cabin-mounted LiDAR sensors provide for terrain mapping, stone localization and digitization, and a planning algorithm determines the placement position of each stone. As the properties of the materials are unknown at the beginning of construction, and because error propagation can hinder the efficacy of pre-planned assemblies with non-uniform components, the structure is planned on-the-fly: the desired position of each stone is computed immediately before it is placed, and any settling or unexpected deviations are accounted for. We present the first result of this geometric- and motion-planning process: a 3-m-tall wall composed of 40 stones with an average weight of 760 kg.


Author(s):  
Seyed Reza Razavi ◽  
Masoud Boroomand

Multi-Objective Optimization Problems (MOP) are very usual and complicated subjects in Turbomachinery and there are several methodologies for optimizing these problems. Genetic Algorithm (GA) and Artificial Neural Network (ANN) are the most popular ones to solve MOP. In this study, optimization was done for leaned rotor blades to achieve maximum performance parameters including specifically stage pressure ratio, efficiency and operating range. By bending an existing transonic rotor which is well-known as NASA rotor-67 in tangential direction, effect of leaning on performance and aerodynamic parameters of transonic axial-flow compressor rotors was studied. To understand all effects of lean angle, an organized investigation including numerical simulation of basic rotor, implementation of curvatures on basic rotor, numerical simulation of leaned blades and optimization were applied. Various levels of lean angles were implemented to basic rotor and by employing a three dimensional compressible turbulent model, the operating parameters were achieved. Afterwards, the results were used as input data of optimization computer code. Finally, the ANN optimization method was used to achieve maximum stage pressure ratio, efficiency and safe operating range. it was found that the Optimized leaned blades according to their target function had positive or negative optimized angles and the optimized lean angles effectively increased the safe operating range about 12% and simultaneously increase the pressure ratio and efficiency by 4% and 5%, respectively.


Sign in / Sign up

Export Citation Format

Share Document