scholarly journals Subpopulations of blood monocytes in patients with generalized hypoxia

2019 ◽  
Vol 18 (1) ◽  
pp. 277-285
Author(s):  
S. P. Chumakova ◽  
M. V. Vins ◽  
O. I. Urazova ◽  
D. A. Azarova ◽  
V. M. Shipulin ◽  
...  

The aimof the work is to establish general regularities and features of differentiation of blood monocytes into 4 subpopulations in diseases associated with circulatory and respiratory hypoxia.Materials and methods.18 patients with ischemic heart disease (IHD), 12 patients with ischemic cardiomyopathy (ICMP), 14 patients with chronic obstructive pulmonary disease (COPD), 15 patients with newly diagnosed infiltrative pulmonary tuberculosis (PTB) and 12 healthy donors were examined. In whole blood, we determined the relative number of different subpopulations of monocytes by flow cytometry. The results were analyzed by statistical methods.Results.It is shown that an increase in the number of classical (80.56 [77.60; 83.55]%) and the deficit of intermediate (10.38 [9.36; 11.26]%), non-classical (6.03 [5.24; 6.77]%) and transitional (2.14 [1.41; 3.92] %) monocytes in the blood is determined in patients with COPD when compared with the group of healthy donors (p< 0.05). In groups of patients with PTB and IHD, an increase in the number of intermediate monocytes (26.24 respectively [22.38; 42.88] % and 25.27 [15.78; 31.39]%) and the lack of transitional cells (1.77 [1.36; 3.74]% and 2.68 [2.63; 4.0]%) at the normal content of classical and non-classical forms of monocytes (p< 0.05) is detected. In patients with ICMP, a decrease in the number of non-classical monocytes (up to 5.05 [4.08; 6.58]%) is combined with the normal cell content of other subpopulations (p< 0.05). The interrelation between the number of classical and intermediate monocytes in patients with COPD (r= –0.63;p< 0.05), PTB (r= –0.72;p< 0.01), IHD (r= –0.59;p< 0.05), ICMP (r= –0.58;p< 0.05) was established.Conclusion.In COPD associated with generalized hypoxia, an increase in the number of classical monocytes is combined with a deficiency of their other subpopulations in the blood. In PTB and IHD, antigenic stimulation of the immune system mediates accelerated differentiation of monocytes from classical to intermediate forms with a decrease in the number of transitional cells regardless of the etiology of the disease (infectious or non-infectious) and the type of hypoxia (respiratory or circulatory).

2020 ◽  
Vol 27 (4) ◽  
pp. 9-17
Author(s):  
T. V. Talayeva ◽  
O. M. Parkhomenko ◽  
I. V. Tretyak ◽  
O. V. Dovhan ◽  
O. V. Shumakov

The aim – to determine the extent of different subpopulations of blood monocytes in acute myocardial infarction (AMI) with ST-segment elevation patients on day 1 and 7 and to evaluate the relationship between their content and the dynamics of changes and the risk of complications after AMI.Materials and methods. The composition of individual subpopulations of monocytes in the peripheral venous blood (and general clinical and biochemical blood tests) was evaluated in 50 pts with STEMI (who were admitted within 6 hours after the onset of the disease) at admission (before primary PCI) and on day 7. All patients received standard recommended therapy. Dynamic heart echocardiography was also performed on the 1st and 7th day. All patients were divided into 2 groups depending on the dynamical increase (1 group – 21 pts) or decrease (2 group – 29 pts) of classical monocytes (CD14hiCD16–) subpopulation during 7 days of follow-up. The control group included 15 healthy subjects with no signs of coronary heart disease and 23 pts with chronic coronary heart disease without AMI.Results and discussion. In subgroup 1, the percentage of the «classical» fraction of monocytes during the observation increased to 89.0±1.2 %, which was 4.2 % more than on the 1st day and 12.5 % more than in the control group (р<0.05), while the absolute amount of classic monocytes on day 7 increased by 48 % compared to initial value (р<0.01). The percentage of «intermediate» (CD14hiCD16+) blood monocytes in patients of this subgroup on the 1st day of hospitalization was 70 % higher than in the control group, and 42 % higher than in the 2nd subgroup of patients (р<0,001), however, on the 7th day it decreased by 30 % compared to baseline, although it remained by 8 % more than in the control group (the absolute number of «intermediate» monocytes did not change). The activation index (IA) of the «intermediate» monocytes on the first day did not differ between subgroups and was 40 % higher than in the control group (р<0.001). However, in the dynamics of observation, in patients of subgroup 1, this figure did not change, while in subgroup 2 IA decreased by 60 % (р<0.001). Despite the fact that the absolute number of anti-inflammatory («patrolling») (CD14+lowCD16++) monocytes did not change until the 7th day of observation (and their percentage decreased slightly), their IA was significantly lower than in the control group (95 %) and in patients of subgroup 2 (92 %, р<0,001). In patients of subgroup 2, the decrease of the percentage of «classic» monocytes was –7.7 % (from 90.4±0.8 to 83.4±1.2 %). Despite the fact that the number and percentage of intermediate monocytes increased in dynamics, their IA decreased almost 2 times, which may indicate a decrease in the pro-inflammatory ability these monocytes. The percentage and number of «patrolling» monocytes increased in dynamics by 37.4 % (р<0.0001) and by 268.3 % (р<0.01), respectively. IA of patrolling monocytes was almost 12 and 7 times higher than in patients of subgroup 1 on the 1st and 7th day of observation, respectively, which may indicate a significant activation of anti-inflammatory activity of patrolling monocytes. Intracardiac thrombosis was 3.3 times more common in patients of subgroup 1, in this subgroup was also more often noted (compared to the subgroup 2): dilatation of the left ventricle (almost 8 times), reduction of left ventricular ejection fraction (4 times), and pathological post-infarction remodeling of the left ventricle (almost 7 times).Conclusions. The results of the study indicate the important role of different subpopulations of blood monocytes in the processes of myocardial damage and recovery (in particular, the pro-inflammatory role of increasing the number of classical monocytes and increasing the activity of intermediate monocytes, as well as the anti-inflammatory role of increasing the number, percentage and activity of patrolling monocytes) in patients with AMI and can be the basis for developing new approaches to the diagnosis and prevention of complications of this disease.


2021 ◽  
Vol 23 (2) ◽  
pp. 231-236
Author(s):  
V. A. Beloglazov ◽  
I. A. Yatskov ◽  
Rean Hayrievna Useinova

Chronic obstructive pulmonary disease (COPD) is a progressive disease characterized by irreversible or partially reversible obstruction of the bronchial tree. Currently, there are many proven links in the COPD etiopathogenesis, among which a pivotal role is assigned to the value of the hyperergic inflammatory reaction in response to inhalation of various harmful substances (tobacco smoke, industrial pollutants, etc.). The number of macrophages, neutrophils, lymphocytes increases in the lungs of COPD patients, and these cells secrete a fairly wide range of inflammatory mediators. Bacterial colonization of the airways is one of the key features in COPD pathogenesis leading to persistent or chronic stimulation of immune cells through Tolllike receptors (TLR), which perceive the pathogen-associated molecular patterns (PAMPs).This article provides a review of literature concerning modern concepts of the role of Toll-like receptors expression and polymorphism, in particular, TLR4, in pathogenesis of COPD. TLR4 is a member of the Tolllike receptor family that plays a fundamental role in pathogen identification and innate immune activation. By recognizing the pathogen-associated molecular patterns (PAMPs) expressed on infectious agents, TLRs mediate the production of cytokines necessary for the development of effective immunity. Different TLRs exhibit distinct expression patterns. This receptor is most abundantly expressed in placenta and in the myelomonocytic leukocyte subpopulations. E.g., Di Stefano A. et al. (2017), determined immunohistochemically the expression levels of TLR2, TLR4, TLR9, NOD1, NOD2, CD14, Toll-interleukin-1-receptor domain containing adapter protein (TIRAP) and interleukin-1-receptor-associated phosphokinases (IRAK1 and IRAK4) in bronchial mucosa of patients with stable COPD of varying severity. It was found that TLR4 expression of the bronchial epithelium positively correlated with degree of obstruction and CD4+ and CD8+T cell contents. Stimulation of TLR4 increases cytokine production, which may be a relevant mechanism by which bacteria cause excessive inflammation in COPD patients. The degree of TLR4 involvement into COPD pathogenesis requires more detailed study in future, in order to determine the main mechanisms for emerging inflammatory response in the airways. This review article is part of a research grant project to study pro-inflammatory response to endotoxin of Gram-negative flora in COPD pathogenesis (State registration number – АААА-А19-119122390040-2).


Author(s):  
Ekaterina V. Anikina ◽  
Alphiya R. Tsygankova

Introduction. The role of industrial aerosol nanoparticles in the development of chronic obstructive pulmonary disease is still poorly understood. The aim of study is to determine the distribution of monocyte subpopulations in patients with chronic obstructive pulmonary disease under the influence of industrial aerosols containing nanoparticles. Materials and methods. A single-center cohort observational study included patients with chronic obstructive pulmonary disease (COPD) (GOLD 2011 criteria) who were exposed to industrial aerosols (n=32), COPD patients, tobacco smokers (n=35), and conditionally healthy individuals without occupational hazards (n=29). Nanoparticles in the air of the working area were determined by inductively coupled plasma atomic emission spectrometry and scanning electron microscopy. Metal-containing nanoparticles (Pb, Fe, Cr) predominated in the casters' workplaces, while the grinders were mainly exposed to silicon dioxide nanoparticles. The groups were comparable by gender, age, and duration of COPD. Monocyte subpopulations in peripheral blood were determined by flow cytofluorometry. Results. In COPD patients who worked in contact with an industrial aerosol containing metal nanoparticles, the proportion of "classical" CD14+CD16- monocytes was increased, and the proportion of "intermediate" CD14+CD16+ and "non-classical" CD14dimCD16+ was reduced. The percentage of "non-classical" monocytes exposed to silicon dioxide nanoparticles was increased, and the percentage of "intermediate" monocytes was reduced. At the same time, the proportion of classical monocytes was highest in patients with COPD who worked under the influence of metal nanoparticles (84.3%±6.3%), intermediate monocytes - in patients with COPD due to tobacco smoking (6.1%±1.5%), non-classical monocytes - in the group of COPD and contact with silicon dioxide nanoparticles (20.45%±0.25%). Conclusions. COPD under the influence of industrial aerosol containing metal nanoparticles is characterized by an increase in the proportion of "classical' monocytes, and silicon dioxide nanoparticles - "non-classical”. The level of subpopulations of blood monocytes is a promising marker of professionally caused COPD.


2021 ◽  
Author(s):  
Ye Yuan ◽  
Hongbing Shi ◽  
Ye Wu ◽  
Xiaodong Li

Abstract The relationship between non-small cell lung cancer (NSCLC) and chronic obstructive pulmonary disease (COPD) has been demonstrated in many studies. However, the underlying connection is still unknown. The present study explored the landscape between them. Based on literature research and modularized analysis, NSCLC and COPD network were constructed. We employed functional annotation to measure the relationships among the annotation terms of overlapping modules. The two diseases share 154 overlapping genes, 2374 common biological processes and 601 pathways. MMP9, BCL2, BAX, TP53, PIK3CA were common hub genes of the top three modules between NSCLC and COPD. The most common significant biological process was inflammatory response. Via validation, MMP9 and BCL2 were highly expressed in the NSCLC patients with COPD than healthy donors, while BAX and TP53 were lower expressed. Our results provide novel molecular connection between NSCLC and COPD, which may facilitate the dignosis and treatment of multiple diseases.


2021 ◽  
Vol 23 (5) ◽  
pp. 1183-1190
Author(s):  
E. G. Churina ◽  
A. V. Popova ◽  
O. I. Urazova ◽  
M. R. Patysheva ◽  
S. P. Chumakova ◽  
...  

We examined expression pattern of CD80 and HLA-DR pro-inflammatory molecules on the monocytes in patients with pulmonary tuberculosis (TB), depending on the clinical form of the disease and susceptibility of the pathogen to anti-tuberculosis drugs. The study involved forty-five patients with newly diagnosed pulmonary TB (25 men and 20 women aged 18 to 55 years, average age — 44.0±12.4 years). The control group included 15 healthy donors with similar socio-demographic characteristics as in TB patients. Venous blood was used as biomaterial for assays. Studies of the monocyte immunophenotype were carried out by flow cytometry of whole blood cells using Cytoflex flow cytometer (Beckman Coulter, USA) with specific monoclonal antibodies (eBioscience, USA). We determined the content of cells expressing surface markers of monocytes, i.e., CD14, CD45, CD80, and HLA-DR. The results of this study were evaluated using SPSS Statistics 17.0 standard software package and Microsoft Excel. In the course of the study, we have suggested a working hypothesis that the monocytes in TB patients, still being in circulation, can express activation markers during their migration to inflammation focus, especially CD80 and HLA-DR molecules. Analysis of the total CD14+ monocyte number showed its decrease in all forms and variants of clinical course of pulmonary tuberculosis compared with the control group. Assessment of pro-inflammatory markers expressed on CD14 positive monocytes, i.e., HLA-DR activation marker and CD80 co-stimulatory molecule, showed that the number of monocytes with HLA-DR expression in all TB patients was higher than in healthy donors. HLA- DR expression on CD14+ monocytes in the group of patients with infiltrative TB proved to be 15% higher than in patients with disseminated TB. The expression of CD80 on CD14+ monocytes in TB patients showed no differences between the groups and varied within the normal range. Hence, an imbalance within monocyte population in patients with pulmonary tuberculosis, regardless of its clinical form and drug sensitivity of the pathogen is developed, due to decrease in total number of CD14+ cells, along with increased relative number of monocytes expressing HLA-DR activation marker (pro-inflammatory phenotype). Meanwhile, expression of the CD80 co-stimulatory molecule on monocytes was within normal values.


Sign in / Sign up

Export Citation Format

Share Document