scholarly journals Spatial and temporal variability of cv. Tempranillo response within the Toro DO (Spain) and projected changes under climate change

OENO One ◽  
2021 ◽  
Vol 55 (1) ◽  
pp. 349-366
Author(s):  
María Concepción Ramos ◽  
Daniël T.H.C. Go ◽  
Santiago Castro

This work aimed to analyse the spatial and temporal variability of the response of Tempranillo variety within the Toro Designation of Origin (DO) and the potential changes under climate change scenarios. The research included the analysis of phenology (bud break, bloom, veraison and maturity) and grape composition at harvest recorded in plots located at seven locations in the DO, at elevations between 667 and 779 m above the sea level (a.s.l.). Changes in phenology and composition were projected for 2050 and 2070 under two emission scenarios (Representative Concentration Pathways RCP4.5 and RCP8.5), considering the predicted changes in climate variables using an ensemble of models. Variations in the phenological timing of up to 28 days for bud break, bloom and veraison and up to 30 days for maturity were recorded during the period analysed and titratable acidity varied between 4 and 8 gL-1. The variability in phenology and grape acidity was mainly driven by temperature and available water in different periods between phenological stages, although the effect of soil properties was also confirmed. Under warmer conditions, an advance of all phenological phases was projected (up to 6, 6, 8 and 12 days by 2050 under the RCP4.5 scenario and near double under the RCP8.5 scenario). In addition, a decrease in titratable acidity is projected (about 1.1 and 1.4 gL-1 by 2050, respectively, under the RCP4.5 and the RCP8.5 scenario and up to 2.0 gL-1 by 2070 under the warmest scenario). The results were in agreement with the variability observed in years with contrasting weather conditions.

2018 ◽  
Vol 156 (9) ◽  
pp. 1061-1069 ◽  
Author(s):  
G. Sujetovienė ◽  
R. Velička ◽  
A. Kanapickas ◽  
Z. Kriaučiūnienė ◽  
D. Romanovskaja ◽  
...  

AbstractThough the number of climate-change-related agro-phenological investigations are growing rapidly, the attention paid to spring crops has been much less than to winter ones. The objective of the current study was to investigate long-term temporal and spatial trends of spring barley phenology and to project changes in the timing and duration of different phenological phases during the current century. Higher temperatures significantly affected the potential scheduling of agricultural practices, accelerating the occurrence of sowing and emergence dates. Historical trends in harvest dates of spring barley showed a slight delay. These changes resulted in the extension of the total vegetative period of spring barley by >12 days over the period investigated (1961–2015). Since Lithuania is situated on the Baltic Sea, an increase in temperature along with an increase in distance from the sea was characteristic over the last 55 years. Projected changes in the occurrence of phenological phases of spring barley differ significantly from analysed historical changes and advancement of all phenological phases have been projected according to both Representative Concentration Pathway (RCP) 2.6 and RCP 8.5 climate change scenarios. Shortening of the total vegetative period by 5 days is foreseen for the far (2071–2100) future according to the pessimistic (RCP 8.5) climate change scenario.


2002 ◽  
Vol 22 (14) ◽  
pp. 1739-1755 ◽  
Author(s):  
Helfried Scheifinger ◽  
Annette Menzel ◽  
Elisabeth Koch ◽  
Christian Peter ◽  
Rein Ahas

Author(s):  
Kerry H. Cook

Accurate projections of climate change under increasing atmospheric greenhouse gas levels are needed to evaluate the environmental cost of anthropogenic emissions, and to guide mitigation efforts. These projections are nowhere more important than Africa, with its high dependence on rain-fed agriculture and, in many regions, limited resources for adaptation. Climate models provide our best method for climate prediction but there are uncertainties in projections, especially on regional space scale. In Africa, limitations of observational networks add to this uncertainty since a crucial step in improving model projections is comparisons with observations. Exceeding uncertainties associated with climate model simulation are uncertainties due to projections of future emissions of CO2 and other greenhouse gases. Humanity’s choices in emissions pathways will have profound effects on climate, especially after the mid-century.The African Sahel is a transition zone characterized by strong meridional precipitation and temperature gradients. Over West Africa, the Sahel marks the northernmost extent of the West African monsoon system. The region’s climate is known to be sensitive to sea surface temperatures, both regional and global, as well as to land surface conditions. Increasing atmospheric greenhouse gases are already causing amplified warming over the Sahara Desert and, consequently, increased rainfall in parts of the Sahel. Climate model projections indicate that much of this increased rainfall will be delivered in the form of more intense storm systems.The complicated and highly regional precipitation regimes of East Africa present a challenge for climate modeling. Within roughly 5º of latitude of the equator, rainfall is delivered in two seasons—the long rains in the spring, and the short rains in the fall. Regional climate model projections suggest that the long rains will weaken under greenhouse gas forcing, and the short rains season will extend farther into the winter months. Observations indicate that the long rains are already weakening.Changes in seasonal rainfall over parts of subtropical southern Africa are observed, with repercussions and challenges for agriculture and water availability. Some elements of these observed changes are captured in model simulations of greenhouse gas-induced climate change, especially an early demise of the rainy season. The projected changes are quite regional, however, and more high-resolution study is needed. In addition, there has been very limited study of climate change in the Congo Basin and across northern Africa. Continued efforts to understand and predict climate using higher-resolution simulation must be sustained to better understand observed and projected changes in the physical processes that support African precipitation systems as well as the teleconnections that communicate remote forcings into the continent.


2016 ◽  
Vol 38 ◽  
pp. 209
Author(s):  
Cláudio Alberto Teichrieb ◽  
Pablo Eli Soares de Oliveira ◽  
Tamires Zimmer ◽  
Cristiano Maboni ◽  
Daniel Michelon dos Santos ◽  
...  

In the last 15-20 years has greatly increased research on the problem of climate change, necessitating a demand for reliable measurements of absorption and emission of carbon dioxide, methane, as well as the impact on water resources. In the biome Pampa are the largest continuous natural field extensions, requiring a monitoring of water and temperature regime on the ground. The water content of the soil has spatial and temporal variability affecting many hydrological processes and determining this is needed since the soil store and provide the water and nutrients for the plants, thus involving relationships water-soil-plant-atmosphere. In this work, we compared the water content behavior of the soil at depths of 10, 30 and 50 cm, the temperature of the soil at depths of 5, 15 and 30 cm, heat flux in soil installed 10 cm deep and the thermal conductivity was determined in two experimental sites in the Pampa biome, for the period 01.01.2015 to 06.31.2015. It was found that there are differences between the sites in the capacity to retain moisture in the soil and in the ability to store energy in the soil for the study period.


Author(s):  
Ilya Polyak

Scientific descriptions of the climate have traditionally been based on the study of average meteorological values taken from different positions around the world. In recent years however it has become apparent that these averages should be considered with other statistics that ultimately characterize spatial and temporal variability. This book is designed to meet that need. It is based on a course in computational statistics taught by the author that arose from a variety of projects on the design and development of software for the study of climate change, using statistics and methods of random functions.


2013 ◽  
Vol 17 (1) ◽  
pp. 409-419 ◽  
Author(s):  
D. Windhorst ◽  
T. Waltz ◽  
E. Timbe ◽  
H.-G. Frede ◽  
L. Breuer

Abstract. This study presents the spatial and temporal variability of δ18O and δ2H isotope signatures in precipitation of a south Ecuadorian montane cloud forest catchment (San Francisco catchment). From 2 September to 25 December 2010, event sampling of open rainfall was conducted along an altitudinal transect (1800 to 2800 m a.s.l.) to investigate possible effects of altitude and weather conditions on the isotope signature. The spatial variability is mainly affected by the altitude effect. The event based δ18O altitude effect for the study area averages −0.22‰ × 100 m−1 (δ2H: −1.12‰ × 100 m−1). The temporal variability is mostly controlled by prevailing air masses. Precipitation during the times of prevailing southeasterly trade winds is significantly enriched in heavy isotopes compared to precipitation during other weather conditions. In the study area, weather during austral winter is commonly controlled by southeasterly trade winds. Since the Amazon Basin contributes large amounts of recycled moisture to these air masses, trade wind-related precipitation is enriched in heavy isotopes. We used deuterium excess to further evaluate the contribution of recycled moisture to precipitation. Analogously to the δ18O and δ2H values, deuterium excess is significantly higher in trade wind-related precipitation. Consequently, it is assumed that evaporated moisture is responsible for high concentrations of heavy isotopes during austral winter.


2021 ◽  
Vol 13 (7) ◽  
pp. 3885
Author(s):  
Christos Spyrou ◽  
Michael Loupis ◽  
Νikos Charizopoulos ◽  
Ilektra Apostolidou ◽  
Angeliki Mentzafou ◽  
...  

Nature-based solutions (NBS) are being deployed around the world in order to address hydrometeorological hazards, including flooding, droughts, landslides and many others. The term refers to techniques inspired, supported and copied from nature, avoiding large constructions and other harmful interventions. In this work the development and evaluation of an NBS applied to the Spercheios river basin in Central Greece is presented. The river is susceptible to heavy rainfall and bank overflow, therefore the intervention selected is a natural water retention measure that aims to moderate the impact of flooding and drought in the area. After the deployment of the NBS, we examine the benefits under current and future climate conditions, using various climate change scenarios. Even though the NBS deployed is small compared to the rest of the river, its presence leads to a decrease in the maximum depth of flooding, maximum velocity and smaller flooded areas. Regarding the subsurface/groundwater storage under current and future climate change and weather conditions, the NBS construction seems to favor long-term groundwater recharge.


Sign in / Sign up

Export Citation Format

Share Document