scholarly journals Investigation of the elastic and hysteresis properties of tread rubber tires with silica

Author(s):  
O. A. Krotova ◽  
Z. S. Shashok ◽  
E. P. Uss ◽  
A. Y. Lyushtyk ◽  
O. V. Karmanova

The influence of different types of silica, differing in quality characteristics, on the complex modulus of rubbers, their elastic modulus, loss modulus, and also on the tangent of angle of mechanical loss are investigated. Mineral fillers silica 1 and silica 2 are introduced at a dosage of 80.00 phr into filled elastomeric compositions based on combination of synthetic styrene-butadiene and polybutadiene rubbers, used for the manufacture of treads for passenger tires. The tests are carried out on a dynamic mechanical analyzer by cyclic compression of vulcanizates in the temperature range 20–70°С. It is established that vulcanizates with silica 2 are characterized by 8–56% lower value of the complex modulus. It is revealed that rubbers containing a silica 2, depending on temperature, have 13–36% lower values of the elastic modulus and 19–46% lower values of the loss modulus in comparison with samples filled with silica 2. It is determined that in the temperature range from 20 to 70°C vulcanizates with silica 2 are characterized by 7–12% lower values of the tangent of angle of mechanical loss. As a result of the study, it is established that it is the most expedient to introduce mineral filler silica 2 into the formulation of tread rubber compounds for passenger tires. This will make it possible to obtain vulcanizates with increased elasticity and adhesion to the road surface, as well as lower heat losses to the environment and fuel consumption.

1964 ◽  
Vol 37 (4) ◽  
pp. 878-893 ◽  
Author(s):  
Barbara E. Sabey ◽  
G. N. Lupton

Abstract A laboratory investigation has been made into the variation with temperature of the hardness and resilience of a wide variety of rubber compounds of the tire tread type. The effect of hardness and resilience on the fractional properties of the compounds under wet conditions has also been studied. In the first series of tests the resilience and hardness of 25 compounds were measured over a temperature range 0° to 80° C. All were vulcanized tire tread type compounds, and the basic materials used comprised 14 natural rubbers, 7 styrene/butadiene (SBR) rubbers, 2 butyl, 1 polybutadiene, and 1 ethylene/propylene. The tests showed a marked increase in resilience with increasing temperature for all compounds except the polybutadiene; the hardness of all compounds changed very little with temperature, only a slight decrease being observed over the whole temperature rise. Nine compounds of representative resilience and hardness were selected for a second series of tests in which friction was measured over a temperature range 1° to 40° C on seven surfaces representing roads of different textures. For eight of the compounds, friction values decreased with increase in temperature; for the other compound the friction increased to a maximum value at 30° C. These changes in friction cannot be explained by changes in hardness of the compounds, but they are in accordance with resilience changes, taking into account the different test conditions obtaining in the friction and resilience tests. The friction tests also showed that with the portable skid-resistance tester used to measure friction the sharpness of the projections in the road surface is more important than their size in determining the friction values under wet conditions, even when rubber compounds of low resilience are used. The implications of the findings and their application to the study of friction between tire and road are discussed. In particular, they have a bearing on the correct interpretation of resilience measurements of tire tread materials in relation to friction values under wet conditions.


Author(s):  
Oleg K. Garishin ◽  
◽  
Anton Y. Beliaev ◽  

The work is devoted to the study of nanocomposites based on synthetic (styrene-butadiene) rubber with different fillers not previously used. The issue of using composites with alternative fillers is being investigated. The results of experimental testing and analysis of thermo-visco-elastic behav-ior of styrene-butadiene rubbers filled by various mineral particles of micro and nanosize, as well as pyrolysis products of organic food waste, are presented. The filled elastomers discussed in this work are mainly used in the tire industry to improve the performance of tires. All samples were tested on a dynamo-mechanical analyzer (DMA). Temperature and frequency dependences of the dynamic modulus and loss modulus are plotted for each of the composites. The frequency charac-teristics corresponded to the real range of rotation speeds of the car wheel, and the temperature var-ied from –50 to +50ºC. A comparative analysis of the results obtained was carried out. The struc-tural mechanisms of the filler are not investigated. It is assumed that the principles of operation of the investigated fillers at the structural level are similar to those described in many works for clas-sical fillers. Based on the test results a conclusion about the preferable operating conditions for the considered materials was made.


2018 ◽  
Vol 45 (1) ◽  
pp. 5-9
Author(s):  
A.M. Mokhnatkin ◽  
V.P. Dorozhkin ◽  
E.G. Mokhnatkina ◽  
V.E. Muradyan ◽  
L.A. Zotov ◽  
...  

A specially designed relaxometer was used to measure the stress relaxation under 30% elongation for tread rubber compounds based on a blend of three rubbers: natural rubber, neodymium butadiene rubber, and oil-extended styrene butadiene rubber. The rubber compounds were filled with carbon black and silica in different ratios: with 80 parts carbon black only, with 80 parts silica only, and with different ratios of carbon black and silica. The method proposed by Bartenev was used to calculate the relaxation specta. The maxima of the spectra at different relaxation times were assigned to different types of interaction: rubber-filler interaction, carbon black-carbon black interaction, silica-silica interaction, carbon black-silica interaction. New maxima were obtained for specimens containing roughly equal amounts of carbon black and silica. These results were compared with data obtained using transmission electron microscopy. The existence of three levels of structure of filled elastomers and the presence of ‘rigid’ rubber around filler particles are suggested.


2019 ◽  
Vol 9 (13) ◽  
pp. 2697
Author(s):  
Gabriela Ceccon Carlesso ◽  
Glicério Trichês ◽  
João Victor Staub de Melo ◽  
Matheus Felipe Marcon ◽  
Liseane Padilha Thives ◽  
...  

Fatigue cracking and rutting are among the main distresses identified in flexible pavements. To reduce these problems and other distresses, modified asphalt mixtures have been designed and studied. In this regard, this paper presents the results of a study on rheological behavior and resistance to permanent deformation and to fatigue of four different asphalt mixtures: (1) with conventional asphalt binder (CAP 50/70); (2) with binder modified by nanoclay (3% NC); (3) with binder modified by styrene–butadiene–styrene polymer (SBS 60/85); and (4) with binder modified by nanoclay and SBS (3% NC + 2% SBS). For this analysis, the mixtures were evaluated based on complex modulus, permanent deformation tests, and fatigue tests (4PB, in the four-point bending apparatus), with the subsequent application of numerical simulations. The results obtained show a better rheological behavior related to greater resistance to permanent deformation for the mixture 3% NC + 2% SBS, which could represent an alternative for roads where a high resistance to rutting is required. Otherwise, on fatigue tests, higher resistance was observed for the SBS 60/85 mixture, followed by the 3% NC + 2% SBS mixture. Nevertheless, based on the results of the numerical simulations and considering the possibility of cost reduction for the use of the 3% NC + 2% SBS mixture, it is concluded that this modified material has potential to provide improvements to the road sector around the world, especially in Brazil.


2017 ◽  
Vol 44 (8) ◽  
pp. 29-32
Author(s):  
A.N. Vlasov ◽  
D.B. Volkov-Bogorodskii ◽  
Yu.N. Karnet ◽  
Yu.A. Gamlitskii ◽  
V.I. Mudruk

The development of a procedure for assessing the effective deformation properties of filled, hyperelastic polymer composites (chiefly, rubber compounds) is presented. The rigid interphase contact layer is taken into account in the model of the elastomer composite. The filled elastomer can be regarded as a three-component system consisting of: filler particles (of different size); an interphase layer, which can be regarded as part of the modified matrix; the ‘pure’ matrix. In this first part of this study, the general organisation of the investigation is described, a model of the filled elastomer composite is formulated, and the problem of identifying the properties of the hyperelastic matrix is solved on the basis of a potential taking into account the non-linear effects of change in the rigidity of the polymeric material under elongation. The possibility of using the developed procedure to describe the deformation properties of the unfilled vulcanisate of styrene butadiene rubber, i.e. the ‘pure’ matrix, is also shown. The calculated deformation curve coincides completely with the experimental curve when the developed method is used to determine the coefficients of the equations.


1992 ◽  
Vol 20 (4) ◽  
pp. 230-253 ◽  
Author(s):  
T. Akasaka ◽  
K. Kabe ◽  
M. Koishi ◽  
M. Kuwashima

Abstract The deformation behavior of a tire in contact with the roadway is complicated, in particular, under the traction and braking conditions. A tread rubber block in contact with the road undergoes compression and shearing forces. These forces may cause the loss of contact at the edges of the block. Theoretical analysis based on the energy method is presented on the contact deformation of a tread rubber block subjected to compressive and shearing forces. Experimental work and numerical calculation by means of the finite element method are conducted to verify the predicted results. Good agreement is obtained among these analytical, numerical, and experimental results.


1999 ◽  
Vol 27 (4) ◽  
pp. 206-226 ◽  
Author(s):  
L. Garro ◽  
G. Gurnari ◽  
G. Nicoletto ◽  
A. Serra

Abstract The interfacial phenomena between tread rubber compounds and rough surfaces are responsible for most of the behavior of a tire on the road. A new device was developed for the investigation of these phenomena in the laboratory. The device consists of a fully instrumented road wheel on which a simple geometry specimen is driven. The possibilities offered by this device are to perform tests at constant slip or at constant torque on both wet and dry surfaces, with complex cycles. The machine allows the measurement of slip, tangential forces, and temperature on the specimen, and computer software adds the possibility of applying Fourier analyses on force, road wheel speed, and specimen speed data. Other possibilities offered by the road wheel are to change the road surface, the load on the specimen, and the water rate. The description of a complete experiment is detailed in the paper showing the correlation of data with actual tire performances.


Author(s):  
Shaosen Ma ◽  
Guangping Huang ◽  
Khaled Obaia ◽  
Soon Won Moon ◽  
Wei Victor Liu

The objective of this study is to investigate the hysteresis loss of ultra-large off-the-road (OTR) tire rubber compounds based on typical operating conditions at mine sites. Cyclic tensile tests were conducted on tread and sidewall compounds at six strain levels ranging from 10% to 100%, eight strain rates from 10% to 500% s−1 and 14 rubber temperatures from −30°C to 100°C. The test results showed that a large strain level (e.g. 100%) increased the hysteresis loss of tire rubber compounds considerably. Hysteresis loss of tire rubber compounds increased with a rise of strain rates, and the increasing rates became greater at large strain levels (e.g. 100%). Moreover, a rise of rubber temperatures caused a decrease in hysteresis loss; however, the decrease became less significant when the rubber temperatures were above 10°C. Compared with tread compounds, sidewall compounds showed greater hysteresis loss values and more rapid increases in hysteresis loss with the rising strain rate.


2020 ◽  
Vol 39 (1) ◽  
pp. 81-90
Author(s):  
An Zhao ◽  
Xuan-Yu Shi ◽  
Shi-Hao Sun ◽  
Hai-Mo Zhang ◽  
Min Zuo ◽  
...  

1974 ◽  
Vol 47 (1) ◽  
pp. 150-160 ◽  
Author(s):  
Wanda Brachaczek ◽  
W. R. Pierson

Abstract A procedure has been developed for assaying submilligram amounts of debris from synthetic tire tread rubber in aerosol samples collected from the atmosphere. The procedure involves separation from the bulk of the sample by Soxhlet extraction with orthodichlorobenzene in a stream of oxygen, followed by infrared spectroscopic determination of the rubber hydrocarbon SBR (styrene-butadiene copolymer) in the extract. The procedure was developed to overcome serious difficulties having to do with the small amounts of rubber normally encountered and with losses of SBR during extraction from aerosol samples. These matters are discussed in some detail and some applications of the method are illustrated.


Sign in / Sign up

Export Citation Format

Share Document