scholarly journals Detergent Plants of Northern Thailand: Potential Sources of Natural Saponins

Author(s):  
Jiratchaya Wisetkomolmat ◽  
Pongsakorn Suppakittpaisarn ◽  
Sarana Rose Sommano

The natural forests of Northern Thailand are the mother source of many utilisable natural products because of their diverse flora and fauna. Among many plant species found within Northern Thai forests, detergent plants are known for its distinctive cleansing properties. Several local species of detergent plants in Thailand are traditionally used by the locals and indigenous people. However, these plants may become extinct because their habitats have been replaced by industrial agriculture, and their uses have been replaced by chemically synthesised detergents. Researchers need to study and communicate the biology, phytochemistry, and the importance of these plants to conserve natural biodiversity of Northern Thailand. Of many utilisable detergent phytochemicals, natural saponins are known as bio-surfactant and foaming agents. Their physiochemical and biological properties feature structural diversity, which leads to many industrial applications.  In this review, we explained the term “detergent” from the physiological mechanism perspective and the detergent effects of saponin.  We also compiled a list of Thai local plants with cleansing properties focusing on the saponin-containing plants. Future studies should investigate information relative to plant environment, ethnobotanical data and bioactive compound content of these plants. The knowledge acquired from this study will promote the maintenance of the local biodiversity and the conservation of the detergent plant species found in Thailand.

Resources ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 10 ◽  
Author(s):  
Jiratchaya Wisetkomolmat ◽  
Pongsakorn Suppakittpaisarn ◽  
Sarana Rose Sommano

The natural forests of Northern Thailand are the mother source of many utilisable natural products because of their diverse flora and fauna. Northern Thai people have learned to utilise plants, in particular those of plants with cleansing properties, since the beginning of time. Several local species of detergent plants in Thailand are traditionally used by the locals and indigenous people. However, these plants may become extinct because their habitats have been replaced by industrial agriculture, and their uses have been replaced by chemically synthesised detergents. Researchers need to study and communicate the biology, phytochemistry, and the importance of these plants to conserve natural biodiversity of Northern Thailand. Of many utilisable detergent phytochemicals, natural saponins are known as bio-based surfactant and foaming agents. Their physiochemical and biological properties feature structural diversity, which leads to many industrial applications. In this review, we explained the term “detergent” from the physiological mechanism perspective and the detergent effects of saponins. We also compiled a list of Thai local plants with cleansing properties focusing on the saponin-containing plants. Future studies should investigate information relative to plant environment, ethnobotanical data, and the bioactive compound content of these plants. The knowledge acquired from this study will promote the maintenance of the local biodiversity and the conservation of the detergent plant species found in Thailand.


2020 ◽  
Vol 24 (21) ◽  
pp. 2508-2523
Author(s):  
Johana Gómez ◽  
Diego Sierra ◽  
Constanza Cárdenas ◽  
Fanny Guzmán

One area of organometallic chemistry that has attracted great interest in recent years is the syntheses, characterization and study of organometallic complexes conjugated to biomolecules with different steric and electronic properties as potential therapeutic agents against cancer and malaria, as antibiotics and as radiopharmaceuticals. This minireview focuses on the unique structural diversity that has recently been discovered in α- amino acids and the reactions of metallocene complexes with peptides having different chemical behavior and potential medical applications. Replacing α-amino acids with metallocene fragments is an effective way of selectively influencing the physicochemical, structural, electrochemical and biological properties of the peptides. Consequently, research in the field of bioorganometallic chemistry offers the opportunity to develop bioactive metal compounds as an innovative and promising approach in the search for pharmacological control of different diseases.


2019 ◽  
Vol 19 (17) ◽  
pp. 1392-1406
Author(s):  
Suvarna G. Kini ◽  
Ekta Rathi ◽  
Avinash Kumar ◽  
Varadaraj Bhat

Diphenyl ethers (DPE) and its analogs have exhibited excellent potential for therapeutic and industrial applications. Since the 19th century, intensive research is perpetuating on the synthetic routes and biological properties of DPEs. Few well-known DPEs are Nimesulide, Fenclofenac, Triclosan, Sorafenib, MK-4965, and MK-1439 which have shown the potential of this moiety as a lead scaffold for different pharmacological properties. In this review, we recapitulate the diverse synthetic route of DPE moiety inclusive of merits and demerits over the classical synthetic route and how this moiety sparked an interest in researchers to discern the SAR (Structure Activity Relationship) for the development of diversified biological properties of DPEs such as antimicrobial, antifungal, antiinflammatory & antiviral activities.


2021 ◽  
Vol 12 (8) ◽  
pp. 3443-3454
Author(s):  
Biancamaria Senizza ◽  
Leilei Zhang ◽  
Gabriele Rocchetti ◽  
Gokhan Zengin ◽  
Gunes Ak ◽  
...  

The presented results regarding Limonium species could provide valuable information for a large field of industrial applications, including pharmaceutical and cosmeceutical formulations.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 846
Author(s):  
Gitishree Das ◽  
Han-Seung Shin ◽  
Rosa Tundis ◽  
Sandra Gonçalves ◽  
Ourlad Alzeus G. Tantengco ◽  
...  

Valerianaceae, the sub-family of Caprifoliaceae, contains more than 300 species of annual and perennial herbs, worldwide distributed. Several species are used for their biological properties while some are used as food. Species from the genus Valeriana have been used for their antispasmodic, relaxing, and sedative properties, which have been mainly attributed to the presence of valepotriates, borneol derivatives, and isovalerenic acid. Among this genus, the most common and employed species is Valerianaofficinalis. Although valerian has been traditionally used as a mild sedative, research results are still controversial regarding the role of the different active compounds, the herbal preparations, and the dosage used. The present review is designed to summarize and critically describe the current knowledge on the different plant species belonging to Valerianaceae, their phytochemicals, their uses in the treatment of different diseases with particular emphasis on the effects on the central nervous system. The available information on this sub-family was collected from scientific databases up until year 2020. The following electronic databases were used: PubMed, Scopus, Sci Finder, Web of Science, Science Direct, NCBI, and Google Scholar. The search terms used for this review included Valerianaceae, Valeriana, Centranthus, Fedia, Patrinia, Nardostachys, Plectritis, and Valerianella, phytochemical composition, in vivo studies, Central Nervous System, neuroprotective, antidepressant, antinociceptive, anxiolytic, anxiety, preclinical and clinical studies.


2006 ◽  
Vol 36 (5) ◽  
pp. 1218-1235 ◽  
Author(s):  
Steven G Newmaster ◽  
F Wayne Bell ◽  
Christopher R Roosenboom ◽  
Heather A Cole ◽  
William D Towill

Plantations have been claimed to be "monocultures", or "biological deserts". We investigated these claims in the context of a long-term study on plant diversity within plantations with different indigenous tree species, spacings, and soil types that were compared with 410 native stands. Soil type had no influence on plantation species diversity or abundance, and wider spacing resulted in higher richness, lower woody plant abundance, slightly higher cover of herbaceous plants, and large increases in cryptogam cover. We also found a canopy species × spacing interaction effect, where the impact of increased spacing on understory vegetation was more pronounced in spruce than in pine plantations. The dynamic community interactions among species of feathermoss appear to be in response to the physical impediment from varying amounts of needle rain from the different tree species. High light interception and needle fall were negatively correlated with understory plant diversity, as was lack of structural diversity. This study indicates that through afforestation efforts agricultural lands can be restored to productive forests that can harbour nearly one-half of the plant species found in equivalent natural forests within the same geographic region in as little as 50 years. We recommend applying afforestation using indigenous conifer species as a first step towards rehabilitating conifer forests that have been converted to agriculture and subsequently abandoned.


Author(s):  
Zhigang Xie ◽  
Lei Wang ◽  
YiTe Li ◽  
Junli Zhou

Photoactive MOFs-based delivery systems are highly attractive for photodynamic therapy (PDT), but the fundamental interplay among structural parameters and photoactivity and biological properties of those MOFs remains unclear. Herein, porphyrinic...


Planta Medica ◽  
2021 ◽  
Author(s):  
Jerald Nair ◽  
Johannes Van Staden

The Amaryllidaceae features prominently amongst bulbous flowering plant families. Accommodating about a third of its species, South Africa affords a sound basis for Amaryllidaceae plant research. Boophone, Nerine, Crossyne, Clivia, Cryptostephanus, Haemanthus and Scadoxus have been well-represented in such endeavors. The account herein summarizes the studies undertaken between 2013-2020 on these genera in regards to their chemical and biological characteristics. A total of 136 compounds comprising 63 alkaloids and 73 non-alkaloid entities were described during this period from eighteen members of the title genera. The alkaloids were reflective of the structural diversity found in eight isoquinoline alkaloid groups of the Amaryllidaceae. Of these, the crinane (29 compounds), lycorane and homolycorine (11 compounds each) groups were the most-represented. The non-alkaloid substances were embracive of the same number of unrelated groups including, acids, phenolics, flavonoids and triterpenoids. A wide variety of assays were engaged to ascertain the biological activities of the isolated compounds, notably in regards to cancer and motorneuron-related diseases. There were also attempts made to determine the antimicrobial, anti-inflammatory and antioxidant effects of some of the substances. New information has also emerged on the herbicidal, insecticidal and plant growth regulatory effects of selected alkaloid principles. Coupled to the biological screening measures were in instances probes made to establish the molecular basis to some of the activities, particularly in relation to cancer and Parkinsonʹs disease.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Sebastian J. Muderspach ◽  
Folmer Fredslund ◽  
Verena Volf ◽  
Jens-Christian Navarro Poulsen ◽  
Thomas H. Blicher ◽  
...  

Abstract Background Endo-β-1,4-galactanases are glycoside hydrolases (GH) from the GH53 family belonging to the largest clan of GHs, clan GH-A. GHs are ubiquitous and involved in a myriad of biological functions as well as being widely used industrially. Endo-β-1,4-galactanases, in particular hydrolyse galactan and arabinogalactan in pectin, a major component of the primary plant cell wall, with important functions in plant defence and application in the food and other industries. Here, we explore the family’s biological diversity by characterizing the first archaeal and hyperthermophilic GH53 galactanase, and utilize it as a scaffold for engineering enzymes with different product lengths. Results A galactanase gene was identified in the genome of the anaerobic hyperthermophilic archaeon Ignisphaera aggregans, and the isolated catalytic domain expressed and characterized (IaGal). IaGal presents the typical (βα)8 barrel structure of clan GH-A enzymes, with catalytic carboxylates at the end of the 4th and 7th barrel strands. Its activity optimum of at least 95 °C and melting point over 100 °C indicate extreme thermostability, a very advantageous property for industrial applications. If enzyme depletion is reduced, so is the need for re-addition, and thus costs. The main stabilizing features of IaGal compared to other structurally characterized members are π–π and cation–π interactions. The length of the substrate binding site—and thus produced oligosaccharide products—is intermediate compared to previously characterized galactanases. Variants inspired by the structural diversity in the GH53 family were rationally designed to shorten or extend the substrate binding groove, in order to modulate product length. Subsite-deleted variants produced shorter products than IaGal, as do the fungal galactanases inspiring the design. IaGal variants engineered with a longer binding site produced a less expected degradation pattern, though still different from that of wild-type IaGal. All variants remained extremely stable. Conclusions We have characterized in detail the most thermophilic endo-β-1,4-galactanase known to date and successfully engineered it to modify the degradation profile, while maintaining much of its desirable thermostability. This is an important achievement as oligosaccharide products length is an important property for industrial and natural GHs alike.


Química Nova ◽  
2021 ◽  
Author(s):  
Dartagnan Ferreira ◽  
Valter Murie ◽  
Thiago Santos ◽  
Paulo Vieira ◽  
Giuliano Clososki

RECENT ADVANCES IN SELECTIVE FUNCTIONALIZATION OF QUINOLINES. Heterocyclic compounds form an important and extensive group of organic substances. Among nitrogenous heterocyclic molecules, quinolines stand out for exhibiting attractive chemical and biological properties. These substances can be used as ligands, sensors, luminescent and agrochemical materials. In addition, quinoline-containing compounds can exhibit a wide spectrum of pharmacological properties, allowing their use in several approved drugs nowadays. Due to its importance, the synthesis of molecules containing this nucleus becomes a point of interest for synthetic chemists. In this way, several methodologies have been recently developed to prepare quinoline derivatives with high structural diversity. Such chemical transformations allow the chemical modification of these rings with high selectivity and tolerance to diverse functional groups and these properties have been conveniently used in the preparation of biologically active molecules containing this unit. Herein, we present a review of the main methodologies employed in the selective functionalization of quinolines in the last twenty years. In this context, a brief introduction addressing general synthetic and medicinal aspects related to the functionalization positions of the quinoline ring is presented. Several methodologies used in the functionalization of this moiety are discussed, as well relevant synthetic applications, both in the preparation and functionalization of substances of biological interest.


Sign in / Sign up

Export Citation Format

Share Document