scholarly journals Tensile Testing of Epoxy-Based Thermoset System Prepared by Different Methods

Author(s):  
Ankur Bajpai ◽  
Bernd Wetzel

Mechanical response of bisphenol-F based epoxy cured with amine hardener was investigated in tensile testing. Different types of methods were considered in preparing the tensile samples in order to evaluate their effects on the tensile strength of the cured epoxy system. Specifically, four types of preparation methods were discussed to prepare the tensile samples were considered in the study. Further, the effect of different type of tensile samples on tensile strength of specimens was also considered in the analysis. The experimental results showed that the preparation methods affected the tensile strength of the specimens. Starting from the experimental results, an appropriate testing methodology is proposed for epoxy based nanocomposite composite specimens in order to reduce problems that may arise during the test and to optimize procedures for preparation of specimens.

2019 ◽  
Vol 3 (3) ◽  
pp. 68 ◽  
Author(s):  
Bajpai ◽  
Wetzel

The effect of adding different types of soft block copolymer on the tensile properties, fracture mechanic properties, and thermo-mechanical properties of bisphenol F based epoxy resin were studied. Two different self-assembling block copolymers, (a) constituting of a center block of poly (butyl acrylate) and two side blocks of poly (methyl) methacrylate-co-polar co-monomer (BCP 1) and (b) poly(ethylene oxide)-b-poly(butylene oxide) (PEO-PBO) diblock copolymer (BCP 2), were used with an epoxy-hardener system. The maximum fracture toughness and fracture energy were measured as KIc = 2.75 MPa·m1/2 and GIc = 2.37 kJ/m2 for the 10 wt % of BCP 1 modified system, which were 366% and 2270% higher in comparison to reference epoxy system, and a 63% reduction in tensile strength was also observed. Similarly, for BCP2 modified systems, the maximum value of KIc = 1.65 MPa·m1/2 and GIc = 1.10 kJ/m2 was obtained for epoxy modified with 12 wt % of BCP2 and a reduction of 32% in tensile strength. The fracture toughness and fracture energy were co-related to the plastic zone size for all the modified systems. Finally, the analysis of the fracture surfaces revealed the toughening micro-mechanisms of the nanocomposites.


2018 ◽  
Vol 23 (02) ◽  
pp. 243-247
Author(s):  
Yoke Rung Wong ◽  
Austin Mun Kitt Loke ◽  
Shian Chao Tay

Background: To propose a new term (‘construct efficiency’) for the evaluation of multi strands flexor tendon repairs using different suture materials. Methods: A total of twenty specimens from 4-0 braided polyblend sutures (FiberLoop/FiberWire; Arthrex, Naples, FL) and 4-0 nylon sutures (Supramid Extra II; S. Jackson, Inc., Alexandria, VA) were subjected to tensile testing using Pneumatic Cord-and-Yarn Grips (Instron Corp., Canton MA, USA). The ultimate tensile strengths of the suture materials were measured. The expected repair strengths and construct efficiencies were computed based on the experimental results and from available literature on actual repair strengths of the 4-strand Becker, Cruciate repairs and 6-strand Tang, modified Lim-Tsai repairs. Results: The ultimate tensile strength of nylon suture was 15.4 ± 0.6N, lower than that of braided polyblend suture (45.3 ± 2.3N) with a difference of 194%. The construct efficiency of multi strand repairs varied with respect to different repair techniques and suture materials. It was found that the Becker repairs using FiberWire had the highest construct efficiency (55.7%) followed by the modified Lim-Tsai using Supramid (50.9%), Tang repair using Supramid (49.8%), Cruciate repair using Fiberwire (49.1%), and modified Lim-Tsai repair using FiberLoop (33.5%). Conclusions: The construct efficiency is more accurate in showing that, in terms of biomechanical strength, the use of FiberWire for the 4-strand Becker and Cruciate repair is more efficient than that of using FiberLoop for 6-strand modified Lim-Tsai repair.


2018 ◽  
Vol 0 (3) ◽  
pp. 57-62
Author(s):  
S. S. Podpriatov ◽  
S. E. Podpryatov ◽  
S. G. Gichka ◽  
V. G. Getman ◽  
A. V. Makarov ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 741
Author(s):  
Yuseok Ban ◽  
Kyungjae Lee

Many researchers have suggested improving the retention of a user in the digital platform using a recommender system. Recent studies show that there are many potential ways to assist users to find interesting items, other than high-precision rating predictions. In this paper, we study how the diverse types of information suggested to a user can influence their behavior. The types have been divided into visual information, evaluative information, categorial information, and narrational information. Based on our experimental results, we analyze how different types of supplementary information affect the performance of a recommender in terms of encouraging users to click more items or spend more time in the digital platform.


2020 ◽  
Vol 35 (1) ◽  
pp. 61-70
Author(s):  
Na Young Park ◽  
Young Chan Ko ◽  
Lili Melani ◽  
Hyoung Jin Kim

AbstractFor the mechanical properties of paper, tensile testing has been widely used. Among the tensile properties, the tensile stiffness has been used to determine the softness of low-density paper. The lower tensile stiffness, the greater softness of paper. Because the elastic region may not be clearly defined in a load-elongation curve, it is suggested to use the tensile modulus which is defined as the slope between the two points in the curve. The two points which provide the best correlation with subjective softness evaluation should be selected. Low-density paper has a much lower tensile strength, but much larger elongation at the break. It undergoes a continuous structural change during mechanical testing. The degree of the structural change should depend on tensile conditions such as the sample size, the gauge length, and the rate of elongation. For low-density paper, the tensile modulus and the tensile strength should be independent of each other. The structure efficiency factor (SEF) is defined as a ratio of the tensile strength to the tensile modulus and it may be used a guideline in developing superior low-density paper products.


Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 94
Author(s):  
Petar Janjatovic ◽  
Olivera Eric Cekic ◽  
Leposava Sidjanin ◽  
Sebastian Balos ◽  
Miroslav Dramicanin ◽  
...  

Austempered ductile iron (ADI) is an advanced cast iron material that has a broad field of application and, among others, it is used in contact and for conveyance of fluids. However, it is noticed that in contact with some fluids, especially water, ADI material becomes brittle. The most significant decrease is established for the elongation. However, the influence of water and the cause of this phenomenon is still not fully understood. For that reason, in this paper, the influence of different water concentrations in ethyl alcohol on the mechanical properties of ADI materials was studied. The test was performed on two different types of ADI materials in 0.2, 4, 10, and 100 vol.% water concentration environments, and in dry condition. It was found that even the smallest concentration of water (0.2 vol.%) causes formation of the embrittled zone at fracture surface. However, not all mechanical properties were affected equally and not all water concentrations have been critical. The highest deterioration was established in the elongation, followed by the ultimate tensile strength, while the proof strength was affected least.


RSC Advances ◽  
2016 ◽  
Vol 6 (31) ◽  
pp. 26361-26373 ◽  
Author(s):  
G. Rajasekaran ◽  
Avinash Parashar

A one atom-thick sheet of carbon exhibits outstanding elastic moduli and tensile strength in its pristine form but structural defects which are inevitable in graphene due to its production techniques can alter its structural properties.


2015 ◽  
Vol 651-653 ◽  
pp. 1569-1574 ◽  
Author(s):  
Asnul Hadi Ahmad ◽  
Sumsun Naher ◽  
Dermot Brabazon

Abstracts: This paper presents an overview of measured mechanical properties of thixoformed aluminium 7075 feedstock produced by the direct thermal method (DTM). The DTM feedstock billets were processed with a pouring temperature of 685 °C and holding periods of 20 s, 40 s and 60 s before being quenched and subsequently thixoformed. A conventionally cast feedstock billet was produced with a pouring temperature of 685 °C and was allowed to solidify without quenching. The feedstock billets were later formed by an injection test unit in the semi-solid state. Tensile testing was then conducted on the thixoformed feedstock billets. Tensile properties for 7075 DTM thixoformed feedstock billets were found significantly influenced by the thixoformed component density. Samples with longer holding times were found to have higher density and higher tensile strength.


2012 ◽  
Vol 2012 ◽  
pp. 1-7
Author(s):  
O. I. Sekunowo ◽  
G. I. Lawal ◽  
S. O. Adeosun

Samples of the 6063 (Al-1.09Mg2Si) alloy ingot were melted in a crucible furnace and cast in metal and sand moulds, respectively. Standard tensile, hardness, and microstructural test specimens were prepared from cast samples, solution treated at 520∘C, soaked for 6 hrs, and immediately quenched at ambient temperature in a trough containing water to assume a supersaturated structure. The quenched specimens were then thermally aged at 175∘C for 3–7 hrs. Results show that at different ageing time, varied fractions of precipitates and intermetallics evolved in the specimens’ matrices which affect the resulting mechanical properties. The metal mould specimens aged for four hours (MTA-4) exhibited superior ultimate tensile strength of 247.8 MPa; microhardness, 68.5 HV; elongation, 28.2% . It is concluded that the extent of improvement in mechanical properties depends on the fractions, coherence, and distribution of precipitates along with the type of intermetallics developed in the alloy during ageing process.


2011 ◽  
Vol 11 (02) ◽  
pp. 215-236 ◽  
Author(s):  
MATTEO BROGGI ◽  
ADRIANO CALVI ◽  
GERHART I. SCHUËLLER

Cylindrical shells under axial compression are susceptible to buckling and hence require the development of enhanced underlying mathematical models in order to accurately predict the buckling load. Imperfections of the geometry of the cylinders may cause a drastic decrease of the buckling load and give rise to the need of advanced techniques in order to consider these imperfections in a buckling analysis. A deterministic buckling analysis is based on the use of the so-called knockdown factors, which specifies the reduction of the buckling load of the perfect shell in order to account for the inherent uncertainties in the geometry. In this paper, it is shown that these knockdown factors are overly conservative and that the fields of probability and statistics provide a mathematical vehicle for realistically modeling the imperfections. Furthermore, the influence of different types of imperfection on the buckling load are examined and validated with experimental results.


Sign in / Sign up

Export Citation Format

Share Document