scholarly journals Synthesis and Characterization of TiO2/Natural Fiber from Banana Fruit Bunch Waste for Removal of Rhodamine-B in Aqueous Solution

Author(s):  
Allwar Allwar

Indonesia is one of the largest banana producing countries in the world remaining abundance solid waste of banana fruit bunch. The banana fruit bunch contains high natural fibers which were obtained by an impregnation process using potassium hydroxide (KOH) and followed by a carbonization process under steam at 250°C for 5 h. The nanomaterial of TiO2/fibre was prepared by a hydrothermal process at 200°C for 4 h. Surface morphology proved that the TiO2 was loaded into the fibre by an increasing roughness of the surface and irregular size of porosity. The development of amorphous to crystalline phase of TiO2/fibre was clearly observed. The effectiveness of TiO2/fibre for removal of rhodamine B was investigated from different parameters of adsorptions in aqueous solution. The equilibrium adsorptions show that the Langmuir and Freundlich isotherm exhibited the best correlation coefficient (R2 > 0.94) relating to the chemisorption and physisorption interaction in the adsorption process. Kinetic models were well described by the pseudo-first and second-order with the best correlation coefficient (R2 > 0.99). These results indicate that nanomaterial TiO2/fibre can be used as an effective adsorbent for removal of rhodamine B in aqueous solution.

2021 ◽  
Vol 2 (1) ◽  
pp. 45-54
Author(s):  
Allwar Allwar ◽  
Mayla Nur Fatima ◽  
Bayu Wiyantoko

Cellulose from banana fruit bunch was used as a precursor for doping titanium oxide (TiO2) in producing of TiO2/cellulose adsorbent.  Cellulose was obtained by chemical impregnation using potassium hydroxide (KOH) and followed by the hydrothermal process at 250oC for 5 h. The mixture of TiO2 nanoparticles and cellulose was carried out into hydrothermal reactor under de-ionized water and ethanol and heated up to 200oC for 4 h in graphite furnace. Surface morphology analysis showed that the TiO2 clearly immobilized on the surface of cellulose with an increasing roughness of surface and irregular size of porosity. The development of the amorphous to the crystalline phase of TiO2/cellulose was clearly observed by the XRD. The effectiveness of TiO2/cellulose for removal of rhodamine B was investigated from different parameters of adsorption in aqueous solution. Kinetic models were well described by the pseudo-first and second-order with the best correlation coefficient (R2) attributing to the occurrence of chemisorption and physisorption mechanism.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Taslima Ahmed Tamanna ◽  
Shah Alimuzzaman Belal ◽  
Mohammad Abul Hasan Shibly ◽  
Ayub Nabi Khan

AbstractThis study deals with the determination of new natural fibers extracted from the Corypha taliera fruit (CTF) and its characteristics were reported for the potential alternative of harmful synthetic fiber. The physical, chemical, mechanical, thermal, and morphological characteristics were investigated for CTF fibers. X-ray diffraction and chemical composition characterization ensured a higher amount of cellulose (55.1 wt%) content and crystallinity (62.5%) in the CTF fiber. The FTIR analysis ensured the different functional groups of cellulose, hemicellulose, and lignin present in the fiber. The Scherrer’s equation was used to determine crystallite size 1.45 nm. The mean diameter, specific density, and linear density of the CTF fiber were found (average) 131 μm, 0.86 g/cc, and 43 Tex, respectively. The maximum tensile strength was obtained 53.55 MPa for GL 20 mm and Young’s modulus 572.21 MPa for GL 30 mm. The required energy at break was recorded during the tensile strength experiment from the tensile strength tester and the average values for GL 20 mm and GL 30 mm are 0.05381 J and 0.08968 J, respectively. The thermal analysis ensured the thermal sustainability of CTF fiber up to 230 °C. Entirely the aforementioned outcomes ensured that the new CTF fiber is the expected reinforcement to the fiber-reinforced composite materials.


2020 ◽  
Vol 10 (14) ◽  
pp. 4840
Author(s):  
Ghadah M. Al-Senani ◽  
Nada Al-Kadhi

The adsorption of Cu2+ ions from an aqueous solution using AgNPs synthesized from Convolvulus arvensis leaf extract was investigated. The characterization of AgNPs was investigated before and after the adsorption of Cu2+ ions via Fourier-transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy (EDS), and scanning electron microscopy (SEM) analyses. The adsorbent contained various functional groups in addition to the AgNPs, which contributed to the Cu2+ ions adsorption. The silver nanoparticle surface consisted of spherical particles and deep pores, which adsorbed numerous Cu2+ ions. The influences of dosage, pH, and contact time on adsorption of 10 and 50 mg/L Cu2+ at 298 K, and initial Cu2+ concentrations at 298 and 323 K were studied. It was found that the highest percentage of Cu2+ ions adsorbed from an aqueous solution was 98.99%; the aqueous solution had 10 mg/L of Cu2+ ions and 0.2 g of AgNPs, at pH 12 and 298 K. A pseudo-second kinetics model offered the most accurate description of the process of adsorption. The process of Cu2+ adsorption more resembled a Langmuir rather than a Freundlich isotherm model, including chemical and physical mixed adsorption (mixed adsorption) processes, and was exothermic and spontaneous.


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2841 ◽  
Author(s):  
Mauricio Torres-Arellano ◽  
Victoria Renteria-Rodríguez ◽  
Edgar Franco-Urquiza

This work deals with the manufacture and mechanical characterization of natural-fiber-reinforced biobased epoxy resins. Biolaminates are attractive to various industries because they are low-density, biodegradable, and lightweight materials. Natural fibers such as Ixtle, Henequen, and Jute were used as reinforcing fabrics for two biobased epoxy resins from Sicomin®. The manufacture of the biolaminates was carried out through the vacuum-assisted resin infusion process. The mechanical characterization revealed the Jute biolaminates present the highest stiffness and strength, whereas the Henequen biolaminates show high strain values. The rigid and semirigid biolaminates obtained in this work could drive new applications targeting industries that require lightweight and low-cost sustainable composites.


2014 ◽  
Vol 984-985 ◽  
pp. 285-290
Author(s):  
K. Hari Ram ◽  
R. Edwin Raj

Polymer composites reinforced with natural fibers have been developed in recent years, showing significant potential for various engineering applications due to their inherent sustainability, low cost, light weight and comparable mechanical strength. Sisal is a natural fiber extracted from leaves of Agave Sisalana plants and substituted for natural glass fiber. Six different combinations of specimens were prepared with sisal, sisal-glass and glass fibers with epoxy as matrix at two different fiber orientation of 0-90° and ±45°. Mechanical characterization such as tensile, flexural and impact testing were done to analyze their mechanical strength. It is found that the hybrid composite sisal-glass-epoxy has better and comparable mechanical properties with conventional glass-epoxy composite and thus provides a viable, sustainable alternate polymer composite.


2008 ◽  
Vol 569 ◽  
pp. 217-220 ◽  
Author(s):  
Xue Gang Luo ◽  
Feng Liu ◽  
Xiao Yan Lin ◽  
Jian Zhou

A new Gelatin-glutaradehyde-Poly(vinyl alcohol) bioadsorbent was synthesized by immobilizing Poly(vinyl alcohol) onto gelatin followed by cross-linking. This technique gives the bioadsorbent of gelatin good chemical resistance and mechanical strength. SEM and FT-IR were conducted for characterization of the bioadsrobent. A comprehensive adsorption study of Copper(II) removal from synthetic aqueous solution by adsorption on this bioadsorbent was conducted regarding the effects of initial pH, time, and copper(II) initial concentration. The adsorption data were applied to Freundlich isotherm equation and its contents were calculated. The results obtained showed that the new absorbent has good performance for the removal of copper(II).


2012 ◽  
Vol 549 ◽  
pp. 344-348
Author(s):  
Hui Juan Xiu ◽  
Qing Han ◽  
Ru Zhang ◽  
Li Hui Liu

Natural fibers possess many good characteristics, such as abundance, low cost, renewable, biodegradability and photo-degradability that made it a hot spot in exploiting current resources. Chemical modification is a new way to make efficient use of forestry and farming waste natural fiber resources. In this work, softwood fibers were modified by cyanoethylation with acrylonitrile. The influence of acrylonitrile dosage, reaction time, reaction temperature and the time immersed in sodium hydroxide solution with KSCN saturated on cyanoethylation were investigated. Fibers chemical structure and surface morphology before and after modification were characterized by FTIR and scanning electron microscope separately.


Sign in / Sign up

Export Citation Format

Share Document