scholarly journals SARS-CoV-2/COVID-19: Viral Genomics, Epidemiology, Vaccines, and Therapeutic Interventions

Author(s):  
Mohammed Uddin ◽  
Farah Mustafa ◽  
Tahir A. Rizvi ◽  
Tom Loney ◽  
Hanan Al Suwaidi ◽  
...  

The COVID-19 pandemic is due to infection caused by the novel SARS-CoV-2 that impacts the lower respiratory tract. The spectrum of symptoms ranges from asymptomatic infections to mild respiratory symptoms to the lethal form of COVID-19 which is associated with severe pneumonia, acute respiratory distress and fatality. At present, the global case fatality rate of COVID-19 laboratory confirmed cases is ~4.7% ranging from ~0.3-0.4% in Chile and Israel to ~10.8% in Italy. To address this global crisis, up-to-date information on the viral genomics and transcriptomics is crucial for understanding the origins and global dispersal of the virus, providing insight into viral pathogenicity, transmission and epidemiology, and enabling strategies for therapeutic interventions, drug discovery and vaccine development. Therefore, this review provides a comprehensive overview of COVID-19 epidemiology, genomic etiology, findings from recent transcriptomic map analysis, viral-human protein interactions, molecular diagnostics, and the current status of vaccine and novel therapeutic intervention development. Moreover, we provide an extensive list of resources that will help the scientific community access numerous types of databases related to SARS-CoV-2 OMICs and approaches to therapeutics related to COVID-19 treatment.

Viruses ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 526 ◽  
Author(s):  
Mohammed Uddin ◽  
Farah Mustafa ◽  
Tahir A. Rizvi ◽  
Tom Loney ◽  
Hanan Al Suwaidi ◽  
...  

The COVID-19 pandemic is due to infection caused by the novel SARS-CoV-2 virus that impacts the lower respiratory tract. The spectrum of symptoms ranges from asymptomatic infections to mild respiratory symptoms to the lethal form of COVID-19 which is associated with severe pneumonia, acute respiratory distress, and fatality. To address this global crisis, up-to-date information on viral genomics and transcriptomics is crucial for understanding the origins and global dispersion of the virus, providing insights into viral pathogenicity, transmission, and epidemiology, and enabling strategies for therapeutic interventions, drug discovery, and vaccine development. Therefore, this review provides a comprehensive overview of COVID-19 epidemiology, genomic etiology, findings from recent transcriptomic map analysis, viral-human protein interactions, molecular diagnostics, and the current status of vaccine and novel therapeutic intervention development. Moreover, we provide an extensive list of resources that will help the scientific community access numerous types of databases related to SARS-CoV-2 OMICs and approaches to therapeutics related to COVID-19 treatment.


2021 ◽  
Vol 1 (1) ◽  
pp. 117-138
Author(s):  
Ankush Yadav ◽  
Shubhangi Singh ◽  
Vivek Srivastava ◽  
Namrata Bardhan ◽  
Saloni Gupta ◽  
...  

In December 2019, a novel coronavirus (COVID-19) unleashed an unprecedented and unanticipated pandemic, causing widespread concern. More than three million deaths have been documented since the first incidence of COVID-19 discovered in China. Several arduous efforts have been made by the governments of various countries worldwide to prevent and control the SARS-CoV-2 infection. This review article discusses an update on all kinds of therapeutic interventions currently applied or developed to treat SARS-CoV-2 condition, including the repurposing of drugs such as Remdesivir, Favipiravir, Ivermectin, etc. We also discuss CRISPR’s potential involvement in antiviral therapy, convalescent plasma therapy, and immunomodulators in combination to tackle the cytokine storms and present a comprehensive overview on many vaccines that have been created to date or are under trials, as well as their platforms and efficacy. Moreover, this article also discusses the mechanism of action of every therapeutic intervention.


2021 ◽  
Author(s):  
Yuanhong Ma ◽  
Shao-Jie Lou ◽  
Zhaomin Hou

This review article provides a comprehensive overview to recognise the current status of electron-deficient boron-based catalysis in C–H functionalisations.


2014 ◽  
Vol 14 (10) ◽  
pp. 903-912 ◽  
Author(s):  
Yeon-Jeong Kim ◽  
Sang-Gu Yeo ◽  
Jae-Hak Park ◽  
Hyun-Jeong Ko

Genes ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 1061
Author(s):  
Wajdy J. Al-Awaida ◽  
Baker Jawabrah Al Hourani ◽  
Samer Swedan ◽  
Refat Nimer ◽  
Foad Alzoughool ◽  
...  

The outbreak of coronavirus disease 2019 (COVID-19), by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has quickly developed into a worldwide pandemic. Mutations in the SARS-CoV-2 genome may affect various aspects of the disease including fatality ratio. In this study, 553,518 SARS-CoV-2 genome sequences isolated from patients from continents for the period 1 December 2020 to 15 March 2021 were comprehensively analyzed and a total of 82 mutations were identified concerning the reference sequence. In addition, associations between the mutations and the case fatality ratio (CFR), cases per million and deaths per million, were examined. The mutations having the highest frequencies among different continents were Spike_D614G and NSP12_P323L. Among the identified mutations, NSP2_T153M, NSP14_I42V and Spike_L18F mutations showed a positive correlation to CFR. While the NSP13_Y541C, NSP3_T73I and NSP3_Q180H mutations demonstrated a negative correlation to CFR. The Spike_D614G and NSP12_P323L mutations showed a positive correlation to deaths per million. The NSP3_T1198K, NS8_L84S and NSP12_A97V mutations showed a significant negative correlation to deaths per million. The NSP12_P323L and Spike_D614G mutations showed a positive correlation to the number of cases per million. In contrast, NS8_L84S and NSP12_A97V mutations showed a negative correlation to the number of cases per million. In addition, among the identified clades, none showed a significant correlation to CFR. The G, GR, GV, S clades showed a significant positive correlation to deaths per million. The GR and S clades showed a positive correlation to number of cases per million. The clades having the highest frequencies among continents were G, followed by GH and GR. These findings should be taken into consideration during epidemiological surveys of the virus and vaccine development.


2021 ◽  
Vol 11 (5) ◽  
pp. 578
Author(s):  
Oge Gozutok ◽  
Benjamin Ryan Helmold ◽  
P. Hande Ozdinler

Hereditary spastic paraplegia (HSP) and primary lateral sclerosis (PLS) are rare motor neuron diseases, which affect mostly the upper motor neurons (UMNs) in patients. The UMNs display early vulnerability and progressive degeneration, while other cortical neurons mostly remain functional. Identification of numerous mutations either directly linked or associated with HSP and PLS begins to reveal the genetic component of UMN diseases. Since each of these mutations are identified on genes that code for a protein, and because cellular functions mostly depend on protein-protein interactions, we hypothesized that the mutations detected in patients and the alterations in protein interaction domains would hold the key to unravel the underlying causes of their vulnerability. In an effort to bring a mechanistic insight, we utilized computational analyses to identify interaction partners of proteins and developed the protein-protein interaction landscape with respect to HSP and PLS. Protein-protein interaction domains, upstream regulators and canonical pathways begin to highlight key cellular events. Here we report that proteins involved in maintaining lipid homeostasis and cytoarchitectural dynamics and their interactions are of great importance for UMN health and stability. Their perturbation may result in neuronal vulnerability, and thus maintaining their balance could offer therapeutic interventions.


2001 ◽  
Vol 14 (2) ◽  
pp. 229-243 ◽  
Author(s):  
Emanuela Handman

SUMMARY Leishmaniae are obligatory intracellular protozoa in mononuclear phagocytes. They cause a spectrum of diseases, ranging in severity from spontaneously healing skin lesions to fatal visceral disease. Worldwide, there are 2 million new cases each year and 1/10 of the world's population is at risk of infection. To date, there are no vaccines against leishmaniasis and control measures rely on chemotherapy to alleviate disease and on vector control to reduce transmission. However, a major vaccine development program aimed initially at cutaneous leishmaniasis is under way. Studies in animal models and humans are evaluating the potential of genetically modified live attenuated vaccines, as well as a variety of recombinant antigens or the DNA encoding them. The program also focuses on new adjuvants, including cytokines, and delivery systems to target the T helper type 1 immune responses required for the elimination of this intracellular organism. The availability, in the near future, of the DNA sequences of the human and Leishmania genomes will extend the vaccine program. New vaccine candidates such as parasite virulence factors will be identified. Host susceptibility genes will be mapped to allow the vaccine to be targeted to the population most in need of protection.


2018 ◽  
Vol 18 (15) ◽  
pp. 1304-1323 ◽  
Author(s):  
Roberto Sánchez-Sánchez ◽  
Patricia Vázquez ◽  
Ignacio Ferre ◽  
Luis Miguel Ortega-Mora

Toxoplasmosis and neosporosis are closely related protozoan diseases that lead to important economic impacts in farm ruminants. Toxoplasma gondii infection mainly causes reproductive failure in small ruminants and is a widespread zoonosis, whereas Neospora caninum infection is one of the most important causes of abortion in cattle worldwide. Vaccination has been considered the most economic measure for controlling these diseases. However, despite vaccine development efforts, only a liveattenuated T. gondii vaccine has been licensed for veterinary use, and no promising vaccines against neosporosis have been developed; therefore, vaccine development remains a key goal. Additionally, drug therapy could be a valuable strategy for disease control in farm ruminants, as several drugs that limit T. gondii and N. caninum proliferation and dissemination have been evaluated. This approach may also be relevant to performing an initial drug screening for potential human therapy for zoonotic parasites. Treatments can be applied against infections in adult ruminants to minimize the outcomes of a primo-infection or the reactivation of a chronic infection during gestation or in newborn ruminants to avoid infection chronification. In this review, the current status of drug development against toxoplasmosis and neosporosis in farm ruminants is presented, and in an effort to promote additional treatment options, prospective drugs that have shown efficacy in vitro and in laboratory animal models of toxoplasmosis and neosporosis are examined.


2011 ◽  
Vol 14 (3) ◽  
pp. 400 ◽  
Author(s):  
Ravindra B Malabadi ◽  
Advaita Ganguly ◽  
Jaime A Teixeira da Silva ◽  
Archana Parashar ◽  
Mavanur R Suresh ◽  
...  

ABSTRACT - This review highlights the advantages and current status of plant-derived vaccine development with special reference to the dengue virus. There are numerous problems involved in dengue vaccine development, and there is no vaccine against all four dengue serotypes. Dengue vaccine development using traditional approaches has not been satisfactory in terms of inducing neutralizing antibodies. Recently, these issues were addressed by showing a very good response to inducing neutralizing antibodies by plant-derived dengue vaccine antigens. This indicates the feasibility of using plant-derived vaccine antigens as a low-cost method to combat dengue and other infectious diseases. The application of new methods and strategies such as dendritic cell targeting in cancer therapy, severe acute respiratory syndrome, tuberculosis, human immune deficiency virus, and malaria might play an important role. These new methods are more efficient than traditional protocols. It is expected that in the near future, plant-derived vaccine antigens or antibodies will play an important role in the control of human infectious diseases. This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For Readers”) may comment by clicking on ABSTRACT on the issue’s contents page.


Sign in / Sign up

Export Citation Format

Share Document