scholarly journals Study on Physical Properties of Mortar for Section Restoration Using Calcium Nitrite and CO2 Nano-Bubble Water

Author(s):  
Ho-jin Kim ◽  
Hyeonggil Choi ◽  
Heesup Choi ◽  
Bokyeong Lee ◽  
Dongwoo Lee ◽  
...  

This study investigated the physical properties of section-restoration mortar with calcium nitrite and carbon dioxide (CO2) nanobubble mixing water to develop materials and methods for the repair and reinforcement of cracks in reinforced concrete (RC) structures. As the calcium nitrite content increased, the generation rate and generated amount of nitrite-based hydration products increased, owing to the rapid reaction between NO2- ions in calcium nitrite and C3A(Al2O3). Further, the reaction with C3S and C2S was accelerated, thereby increasing the generation rates of Ca(OH)2 and C-S-H. Further, the large amount of Ca2+ ions in these hydration products reacted with CO32- ions in CO2 nanobubble water, thereby increasing the generation of calcite-based CaCO3 in the cement matrix. This appears to have affected the strength development and durability improvement via the densification of the structure. These results suggest that the performance of polymer cement mortar for repairing concrete structures can be improved if calcium nitrite and CO2 nanobubble water are properly combined and applied.

Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3897
Author(s):  
Ho-jin Kim ◽  
Hyeonggil Choi ◽  
Heesup Choi ◽  
Bokyeong Lee ◽  
Dongwoo Lee ◽  
...  

This study investigated the physical properties of section-restoration mortar with calcium nitrite (Ca(NO2)2) and carbon dioxide (CO2) nanobubble mixing water to develop materials and methods for the repair and reinforcement of cracks in reinforced concrete (RC) structures. As the calcium nitrite content increased, the generation rate and generated amount of nitrite-based hydration products also increased, owing to the rapid reaction between NO2− ions in calcium nitrite and C3A(Al2O3). Further, the reaction with C3S and C2S was accelerated, thereby increasing the generation rates of Ca(OH)2 and C-S-H. The large amount of Ca2+ ions in these hydration products reacted with CO32− ions in CO2 nanobubble water, thereby increasing the generation of calcite-based CaCO3 in the cement matrix. This appears to have affected strength development and durability improvement via the densification of the structure. These results suggest that the performance of polymer cement mortar for repairing concrete structures can be improved if calcium nitrite and CO2 nanobubble water are properly combined and applied.


2019 ◽  
Vol 9 (11) ◽  
pp. 2178 ◽  
Author(s):  
Jie Fan ◽  
Gengying Li ◽  
Sijie Deng ◽  
Zhongkun Wang

The mechanical properties of cement mortars with 0~2.0% (by mass) polyvinyl alcohol (PVA) were experimentally studied, and the effects of PVA incorporation on the hydration products and microstructure of the cement mortar were determined with differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The results show that the rational content of PVA formed evenly dispersed network-like thin films within the cement matrix, and these network-like films can bridge cracks in the cement matrix and improve the mechanical properties of the cement mortar. Over- incorporation of PVA may result in the formation of large piece polymer films that coat the cement particles, delay the hydration of the cement mortar and adversely affect its performance. The mechanical properties of the cement mortar show a significant increase and then decrease with a change in the PVA incorporation. When the PVA content was 0.6% and 1.0%, the mortar had the best compressive and flexural strengths, respectively. The compressive strength of the cement mortar increased by 12.15% for a PVA content of 0.6%, and the flexural strength of the cement mortar increased by 24.83% for a PVA content of 1.0%.


2010 ◽  
Vol 658 ◽  
pp. 300-303
Author(s):  
Soo Ryong Kim ◽  
Woo Teck Kwon ◽  
Byung Ik Kim ◽  
Y. Kim ◽  
Sang Wook Ha

The effectiveness of bottom ash on the mechanical and physical properties of lightweight cement mortar for fire proofing application is investigated in this study. Bottom ash is well known that it can make it possible to decrease the thermal conduction in mortar by their porous structure. Physical properties of bottom ash including pozzolanic activity and compressive strength test were measured to decide the replacement amount in formulation as well as chemical composition. This study was undertaken on the use of bottom ash as fine aggregate in fire proofing mortar. Various dosage of bottom ash such as 25%, 50%, 75%, 100% were evaluated by several measurement. We found out there were serious correlation between specific gravity and thermal conductivity, so other porous materials were also investigated to decrease the thermal conductivity of cement mortar as well as bottom ash. In this study, the researches on the mixing proportion were mainly performed to design specification of spraying fire proofing mortar. Based on the laboratory test results, we’d like to suggest the proper adding amount of bottom ash by evaluation of consistency and strength development and then optimum mixing proportions of spraying fire proofing mortar using bottom ash by various evaluations.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1101
Author(s):  
Shaowei Hu ◽  
Yaoqun Xu ◽  
Juan Wang ◽  
Peng Zhang ◽  
Jinjun Guo

Carbon nanotubes (CNTs) are very effective in improving the performance of cement-based materials. Mechanical properties and pore structure were investigated for cement mortar with CNTs. Meanwhile, the composite morphology of CNT–cement material and the evolution of hydration products were observed by scanning electron microscope (SEM), and the quantitative relationship between mechanical properties and pore structure was analyzed. The results indicated that the strength of mortar increased with the addition of 0.05% CNTs and decreased when the fraction of CNTs increased to 0.5%. The porosity of mortar with dispersed CNTs increased significantly, as these pores may be introduced by the dispersant. The quantitative relationship between porosity and strength proved that the increased porosity is the reason for the decreased strength of mortar with 0.5% CNT content, while mortar matrix strength with 0.05% and 0.5% CNTs increased by 44.03% and 71.18%, respectively. SEM images show that CNTs are dispersed uniformly in the mortar without obvious agglomeration and that the CNTs and hydration products form a meshwork structure, which is the mechanism by which CNTs can enhance the strength of the cement matrix.


2021 ◽  
Author(s):  
Huashan YANG ◽  
Yujun CHE

During recycling waste concrete, a large amount of waste concrete powder (WCP) is generated. However, efficient utilization of WCP remains an unresolved issue. This paper investigates the influences of WCP on the properties and hydration products of cement mortar containing fly ash (FA). This study used two different types of WCPs. One was made from an ordinary Portland cement mortar, and the other was derived from a Portland cement mortar. WCP replaced 10%, 20%, and 30% of FA. The water requirement, setting time, flow index, strength, hydration products, and microstructure of FA mortar incorporating WCP were investigated. Test results indicate that the WCP has no significant influence on the performances and hydration products of FA mortar. By adequately combining WCP and FA, the FA mortar with required performances could be reached.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1823
Author(s):  
Won-Kyung Kim ◽  
Young-Ho Kim ◽  
Gigwon Hong ◽  
Jong-Min Kim ◽  
Jung-Geun Han ◽  
...  

This study analyzed the effects of applying highly concentrated hydrogen nanobubble water (HNBW) on the workability, durability, watertightness, and microstructure of cement mixtures. The number of hydrogen nanobubbles was concentrated twofold to a more stable state using osmosis. The compressive strength of the cement mortar for each curing day was improved by about 3.7–15.79%, compared to the specimen that used general water, when two concentrations of HNBW were used as the mixing water. The results of mercury intrusion porosimetry and a scanning electron microscope analysis of the cement paste showed that the pore volume of the specimen decreased by about 4.38–10.26%, thereby improving the watertightness when high-concentration HNBW was used. The improvement in strength and watertightness is a result of the reduction of the microbubbles’ particle size, and the increase in the zeta potential and surface tension, which activated the hydration reaction of the cement and accelerated the pozzolanic reaction.


1989 ◽  
Vol 178 ◽  
Author(s):  
Kirsten G. Jeppesen

AbstractSpray dried absorption products (SDA) having special characteristics are used as substitutes for cement in the preparation of mortars; the qualities of the resulting mixed mortars are described. Conditions are described for mortar mixes, data for which were presented at the MRS Fall Meeting 1987.The influence of the composition of the SDA on water requirement and setting time has been studied. A full scale project involving 3 precast, reinforced concrete front-elements containing 20 and 30 wt.% SDA is described. Strength development, mineralogical composition and corrosion were monitored for two years.A non-standard freeze-thaw experiment was performed which compares mortars containing SDA and fly ash (FA) and also shows the effect of superplasticizer.The possibility of improving the SDA by grinding has been tested and a limited improvement has been found. The strength of the mixed mortars seems slightly influenced by the grain size of SDAGypsum (CaSO4·2H2O), synthetic calcium-sulphite (CaSO3·½H2O) and 2 SDAs have been used as retarders for cement clinker. Mortar test prisms have been cast and comparative strengths after curing for 3 years are reported


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Fakhim Babak ◽  
Hassani Abolfazl ◽  
Rashidi Alimorad ◽  
Ghodousi Parviz

We investigate the performance of graphene oxide (GO) in improving mechanical properties of cement composites. A polycarboxylate superplasticizer was used to improve the dispersion of GO flakes in the cement. The mechanical strength of graphene-cement nanocomposites containing 0.1–2 wt% GO and 0.5 wt% superplasticizer was measured and compared with that of cement prepared without GO. We found that the tensile strength of the cement mortar increased with GO content, reaching 1.5%, a 48% increase in tensile strength. Ultra high-resolution field emission scanning electron microscopy (FE-SEM) used to observe the fracture surface of samples containing 1.5 wt% GO indicated that the nano-GO flakes were well dispersed in the matrix, and no aggregates were observed. FE-SEM observation also revealed good bonding between the GO surfaces and the surrounding cement matrix. In addition, XRD diffraction data showed growth of the calcium silicate hydrates (C-S-H) gels in GO cement mortar compared with the normal cement mortar.


2010 ◽  
Vol 150-151 ◽  
pp. 1143-1151
Author(s):  
Chau Lee ◽  
Nian Fu Wang ◽  
Meng Xun Xiem

This research mainly probes into the analysis of performance and assessment that ethyl acrylate polymer is applied to the cement matrix. The result shows that, before and after the purification, ethyl acrylate can increase the flowability of modified mortar, and with the increasing the dosage of polymer, the flowability is getting better. But if the dosage of hydrogen peroxide used to remove the residua alcohol is excessive, it is easy to cause high mortar viscosity, and that is unfavorable to the flowability. According to the setting time of the mortar under normal consistency, the result shows that the ethyl acrylate before the purification, has retarding effects on both initial and final setting time. With the increasing the dosage of polymer, it takes longer for both setting time. Besides, because hydrogen peroxide has accelerative effect, the purified ethyl acrylate can shorten the setting time of initial and final setting time. However, over dosage of hydrogen peroxide can easily lead to poor strength development in later stage. Using purified ethyl acrylate can overcome the shortcoming of lower strength of 3、7- day early stage. when hydrogen peroxide consumption is 0.5% of the total amount of acid and alcohol, the ethyl acrylate has the positive effect on improving the compressive strength. Finally, among the comprehensive assessments of the mortar testing results, EH0.5-0.1 has the significant effect of modification.


2018 ◽  
Vol 30 (10) ◽  
pp. 04018261 ◽  
Author(s):  
Wassim E. Tabet ◽  
Amy B. Cerato ◽  
Andrew S. Elwood Madden ◽  
Rolf E. Jentoft

Sign in / Sign up

Export Citation Format

Share Document