scholarly journals Mechanical Properties and Microstructure of Polyvinyl Alcohol (PVA) Modified Cement Mortar

2019 ◽  
Vol 9 (11) ◽  
pp. 2178 ◽  
Author(s):  
Jie Fan ◽  
Gengying Li ◽  
Sijie Deng ◽  
Zhongkun Wang

The mechanical properties of cement mortars with 0~2.0% (by mass) polyvinyl alcohol (PVA) were experimentally studied, and the effects of PVA incorporation on the hydration products and microstructure of the cement mortar were determined with differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The results show that the rational content of PVA formed evenly dispersed network-like thin films within the cement matrix, and these network-like films can bridge cracks in the cement matrix and improve the mechanical properties of the cement mortar. Over- incorporation of PVA may result in the formation of large piece polymer films that coat the cement particles, delay the hydration of the cement mortar and adversely affect its performance. The mechanical properties of the cement mortar show a significant increase and then decrease with a change in the PVA incorporation. When the PVA content was 0.6% and 1.0%, the mortar had the best compressive and flexural strengths, respectively. The compressive strength of the cement mortar increased by 12.15% for a PVA content of 0.6%, and the flexural strength of the cement mortar increased by 24.83% for a PVA content of 1.0%.

2020 ◽  
Vol 70 (340) ◽  
pp. 235
Author(s):  
I. Sanrı-Karapınar ◽  
A. O. Pehlivan ◽  
S. Karakuş ◽  
A. E. Özsoy-Özbay ◽  
A. U. Yazgan ◽  
...  

This study is a preliminary attempt to present the preparation and the first time a κ-carrageenan/PVA/eggshell nanostructure is used as a novel biodegradable and homogeneous nanostructure in cement composition. In order to clearly understand the effects these additives have on the mechanical properties of cementitious composites, they were synthesized in double and triple combinations and added into mortar mixtures. Three different cement mortar specimens were prepared by integrating the additives in ratios of 0, 0.1, 0.5 and 1% by cement weight and flexural and compressive strengths of the specimens were determined at the ages of 7 and 28 days. The flowability of the presented nanostructures was also discussed. The results revealed a 10–11% increase in both compressive and flexural strengths for the specimens prepared with the triple combination of the proposed additives. Moreover, strain capacity was enhanced as a result of the efficient dispersion of additives in the cement matrix.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Fakhim Babak ◽  
Hassani Abolfazl ◽  
Rashidi Alimorad ◽  
Ghodousi Parviz

We investigate the performance of graphene oxide (GO) in improving mechanical properties of cement composites. A polycarboxylate superplasticizer was used to improve the dispersion of GO flakes in the cement. The mechanical strength of graphene-cement nanocomposites containing 0.1–2 wt% GO and 0.5 wt% superplasticizer was measured and compared with that of cement prepared without GO. We found that the tensile strength of the cement mortar increased with GO content, reaching 1.5%, a 48% increase in tensile strength. Ultra high-resolution field emission scanning electron microscopy (FE-SEM) used to observe the fracture surface of samples containing 1.5 wt% GO indicated that the nano-GO flakes were well dispersed in the matrix, and no aggregates were observed. FE-SEM observation also revealed good bonding between the GO surfaces and the surrounding cement matrix. In addition, XRD diffraction data showed growth of the calcium silicate hydrates (C-S-H) gels in GO cement mortar compared with the normal cement mortar.


2019 ◽  
Vol 953 ◽  
pp. 209-214
Author(s):  
Yi Teng Zhang ◽  
Lian Zuo ◽  
Jin Chao Yang ◽  
Wei Xia Zhao ◽  
Xiang Xiong Zeng

The main objective of this study is to investigate the effect of cementitious capillary crystalline waterproofing (CCCW) material on the water impermeability and microstructure of concrete. The water impermeability of concrete covered with or without CCCW material was tested according to the Chinese standard GB 18445-2012. The results indicate that concretes coated with CCCW material showed much higher water impermeability than blank ones, and the ratio of water impermeability pressure between them reached 275. The samples obtained in various depths of hardened cement paste specimens with or without CCCW coating were analyzed through scanning electron microscopy (SEM) and thermogravimetry-differential scanning calorimetry (TG-DSC), to study the differences in microstructure and hydration products. The results present that after a 28-day standard curing, there were lots of ettringite crystals and CaCO3 formed in the paste in 1 cm from the coating, but the action depth of the CCCW coating could not reach 3 cm. The ettringite and CaCO3 is precipitated in the pore structure of cement matrix and filling the voids, which leads to the significant enhancement in water impermeability.


2013 ◽  
Vol 687 ◽  
pp. 311-315 ◽  
Author(s):  
Teresa María Piqué ◽  
Luis Fernandez Luco ◽  
Analía Vázquez

The development of new materials for specific applications is an increasing field in the construction industry, so is the employment of nanotechnology for this goal. When poly(vinyl alcohol) (PVA) is added to a Portland cement mortar, a film is formed in between the hydration products. This film has low elasticity modulus and high tensile strength and it enhances the mortar’s mechanical properties in the fresh and hardened states. The addition of nano montmorillonites (MMT) gives the polymer a better compatibility with the cement matrix. In this work, the changes in the microstructure of Portland cement mortars modified with PVA and PVA with MMT are assessed by means of transport of fluids capacity as an indicator. The reference is a standard mortar according to EN 196-1. The parameters measured are: weight loss under drying and air permeability. Complementary measures, such as compressive and flexural strengths and drying shrinkage have also been performed. From the obtained results, it can be concluded that the inclusion PVA + MMT to Portland cement mortar doesn’t affect the microstructure, when compared with Portland cement mortar with PVA, and even increase its tensile strength.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1101
Author(s):  
Shaowei Hu ◽  
Yaoqun Xu ◽  
Juan Wang ◽  
Peng Zhang ◽  
Jinjun Guo

Carbon nanotubes (CNTs) are very effective in improving the performance of cement-based materials. Mechanical properties and pore structure were investigated for cement mortar with CNTs. Meanwhile, the composite morphology of CNT–cement material and the evolution of hydration products were observed by scanning electron microscope (SEM), and the quantitative relationship between mechanical properties and pore structure was analyzed. The results indicated that the strength of mortar increased with the addition of 0.05% CNTs and decreased when the fraction of CNTs increased to 0.5%. The porosity of mortar with dispersed CNTs increased significantly, as these pores may be introduced by the dispersant. The quantitative relationship between porosity and strength proved that the increased porosity is the reason for the decreased strength of mortar with 0.5% CNT content, while mortar matrix strength with 0.05% and 0.5% CNTs increased by 44.03% and 71.18%, respectively. SEM images show that CNTs are dispersed uniformly in the mortar without obvious agglomeration and that the CNTs and hydration products form a meshwork structure, which is the mechanism by which CNTs can enhance the strength of the cement matrix.


2019 ◽  
Vol 296 ◽  
pp. 27-34
Author(s):  
Jakub Hodul ◽  
Nikol Žižková ◽  
Rostislav Drochytka ◽  
Ruben Paul Borg

Many years of experience in practice not only in the Czech Republic but also around the world have shown that crystallising waterproofing technology (mortars, coatings) improves the water and water-vapor impermeability of the treated structures and thus positively affects the durability of concrete. The sealing of pores, capillaries and cracks also prevents degradation due to physical and mechanical structural actions (e.g. the effects of ice and salts in pores, etc.). In the presented research, the influence of different crystallization admixture (CA) contents on the mechanical properties of polymer-cement mortar with 24% cement substitution by waste limestone was investigated. The crystallization admixture (CA) was added in different amounts at 0.8, 1.6 and 2.4% of the cement content in the mix. It was determined that the mechanical properties, namely the compressive and flexural strengths were not significantly influenced by the CA addition, with the highest difference recorded in the compressive strength (7%). The cohesion with the base concrete containing different amounts of limestone was sufficient, and the bond of the mortar to concrete was also closely examined using scanning electron microscopy (SEM). Through the SEM investigation it was determined that the presence of waste limestone of particle size below 250 μm did not affect the formation of crystals during the proper hydration process, in a climatic chamber at a high relative humidity (99%).


2020 ◽  
Vol 38 (10A) ◽  
pp. 1522-1530
Author(s):  
Rawnaq S. Mahdi ◽  
Aseel B. AL-Zubidi ◽  
Hassan N. Hashim

This work reports on the incorporation of Flint and Kaolin rocks powders in the cement mortar in an attempt to improve its mechanical properties and produce an eco-friendly mortar. Flint and Kaolin powders are prepared by dry mechanical milling. The two powders are added separately to the mortars substituting cement partially. The two powders are found to improve the mechanical properties of the mortars. Hardness and compressive strength are found to increase with the increase of powders constituents in the cement mortars. In addition, the two powders affect water absorption and thermal conductivity of the mortar specimens which are desirable for construction applications. Kaolin is found to have a greater effect on the mechanical properties, water absorption, and thermal conductivity of the mortars than Flint. This behavior is discussed and analyzed based on the compositional and structural properties of the rocks powders.


2021 ◽  
pp. 095400832110055
Author(s):  
Yang Wang ◽  
Yuhui Zhang ◽  
Yuhan Xu ◽  
Xiucai Liu ◽  
Weihong Guo

The super-tough bio-based nylon was prepared by melt extrusion. In order to improve the compatibility between bio-based nylon and elastomer, the elastomer POE was grafted with maleic anhydride. Scanning Electron Microscopy (SEM) and Thermogravimetric Analysis (TGA) were used to study the compatibility and micro-distribution between super-tough bio-based nylon and toughened elastomers. The results of mechanical strength experiments show that the 20% content of POE-g-MAH has the best toughening effect. After toughening, the toughness of the super-tough nylon was significantly improved. The notched impact strength was 88 kJ/m2 increasing by 1700%, which was in line with the industrial super-tough nylon. X-ray Diffraction (XRD) and Differential Scanning Calorimetry (DSC) were used to study the crystallization behavior of bio-based PA56, and the effect of bio-based PA56 with high crystallinity on mechanical properties was analyzed from the microstructure.


2013 ◽  
Vol 592-593 ◽  
pp. 647-650 ◽  
Author(s):  
Małgorzata Lenart

Cement – polymer composites are nowadays widely used in repair systems not only in case of concrete or reinforced concrete constructions but also in masonry. Polymers addition for example already at 5% m.c. modifies the structure of the cement – polymer composite in a way that many of the mechanical properties such as flexural strength, tensile strength or adhesion to substrates are improved. The paper presents the results of tests such as flexural, compressive or adhesion strength to ceramic substrate of hardened cement mortars with different composition, as well as selected cement mortars modified by two polymers: polyvinyl alcohol and styrene – butadiene polymer dosed at 5 % m.c. Four types of cement mortars modified by lime (component used in historical constructions as well as in contemporary masonry mortars) are also examined for comparison.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Huashan Yang ◽  
Yujun Che

The agglomeration of nano-CaCO3 (NC) is the largest bottleneck in applications in cementitious materials. If nano-CaCO3 modifies the surface of micron-scale limestone powder (LS), then it will form nano-CaCO3/limestone composite particles (NC/LS). It is known that micron-scale limestone is easily dispersed, and the “dispersion” of NC is governed by that of LS. Therefore, the dispersion of nano-CaCO3 can be improved by the NC/LS in cementitious materials. In this work, the preparation of NC/LS was carried out in a three-necked flask using the Ca(OH)2-H2O-CO2 reaction system. The morphology of NC/LS was observed by a field emission scanning electron microscope (FE-SEM). The effects of NC/LS on the hydration products and pore structure of cementitious materials are proposed. 5% NC/LS was added into cement paste and mortar, and the mechanical properties of the specimens were measured at a certain age. Differential scanning calorimetry (DSC), thermal gravimetric analysis (TG), and backscattered electron imaging (BSE) were conducted on the specimens to investigate the hydration products and pore structure. The properties of specimens with NC/LS were compared to that of control specimens (without NC/LS). The results revealed that NC/LS reduced the porosity and improved the mechanical properties of the cementitious materials.


Sign in / Sign up

Export Citation Format

Share Document