scholarly journals Overview of Nano-fiber Bundles Fabrication via Electrospinning and Morphology Analysis

Author(s):  
Amirhossein Ahmadian ◽  
Abbas Shafiee ◽  
Nojan Aliahmad ◽  
Mangilal Agarwal

Electro-spun ultra-fine fibers exhibit two significant properties: a high surface-to-volume ratio and a relatively defect-free molecular structure. Due to the high surface-to-volume ratio, electro-spun materials are well suited for activities requiring increased physical contact, such as providing a site for a chemical reaction or filtration of small-sized physical materials. However, electrospinning has many shortcomings, including difficulties in producing inorganic nanofibers and a limited number or variety of polymers used in the process. The fabrication of nanofiber bundles via electrospinning is explored in this analytical study, as well as the relationship between extrinsic electrospinning parameters and the relative abundance of various fiber morphologies. Numerous variables could impact the fabrication of nanofibers, resulting in a variety of morphologies; therefore, adequate ambient conditions and selecting the appropriate solvent for achieving a homogenous polymer solution and uniform electro-spun materials are examined. Finally, common polymers suitable for electrospinning and the promising applications of ultra-fine fibers achieved via electrospinning are studied in this paper.

Textiles ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 206-226
Author(s):  
Amirhossein Ahmadian ◽  
Abbas Shafiee ◽  
Nojan Aliahmad ◽  
Mangilal Agarwal

Electrospun nano-fibers exhibit two significant properties: a high surface-to-volume ratio and a relatively defect-free molecular structure. Due to the high surface-to-volume ratio, electro-spun materials are well suited for activities requiring increased physical contact, such as providing a site for a chemical reaction or filtration of small-sized physical materials. However, electrospinning has many shortcomings, including difficulties in producing inorganic nanofibers and a limited number or variety of polymers used in the process. The fabrication of nanofiber bundles via electrospinning is explored in this analytical study and the relationship between all effective electrospinning parameters and the relative abundance of various fiber morphologies. Numerous variables could impact the fabrication of nanofibers, resulting in a variety of morphologies such as uniform, entangled, individual beads, beads-on-string, etc. Therefore, adequate ambient conditions and selecting the appropriate polymer and solvent for achieving a homogenous polymer solution and uniform with desired nanofiber properties for different applications of electro-spun materials are examined. Finally, the promising applications of nano-fine fibers in various fields achieved via electrospinning are studied in this paper.


QJM ◽  
2020 ◽  
Vol 113 (Supplement_1) ◽  
Author(s):  
H Ibrahim

Abstract Nowadays there are more interesting with nanotechnology and its applications in several sectors specially in medicine for diagnoses, therapeutic and research biomedical tools. It can be defined as any process or technique used to produce material in nano-scale structure with particle size ranged from 1-100 nm. The utilization of nanotechnology in human health benefits known as nano medicine. So that nanotechnology has firmly entered the drug delivery realm to maximize drug therapeutic activity and minimize its undesirable side effects. Herein we deal with both nanoparticles and nano-fibers and their applications in medical field. Nano-particles have unique properties from its small size with high surface area therefore it provides larger than particle numbers from that prepared with convention methods. In addition, nanoparticles can be used to improve various drug bio-availability from its biodegradability and bio-compatibility. Nano-fibers have huge surface area to volume ratio which increase its performance in several applications. Nano-fiber produced via electrospinning process (simple and have high production rate). It can be used in many applications such as water filtration, tissue engineering scaffold, wounds, fiber composites, drug release and protective clothes.


2017 ◽  
Vol 8 (1) ◽  
pp. 22-48 ◽  
Author(s):  
Iain Mackinnon

This article employs a new approach to studying internal colonialism in northern Scotland during the 18th and 19th centuries. A common approach to examining internal colonial situations within modern state territories is to compare characteristics of the internal colonial situation with attested attributes of external colonial relations. Although this article does not reject the comparative approach, it seeks to avoid criticisms that this approach can be misleading by demonstrating that promoters and managers of projects involving land use change, territorial dispossession and industrial development in the late modern Gàidhealtachd consistently conceived of their work as projects of colonization. It further argues that the new social, cultural and political structures these projects imposed on the area's indigenous population correspond to those found in other colonial situations, and that racist and racialist attitudes towards Gaels of the time are typical of those in colonial situations during the period. The article concludes that the late modern Gàidhealtachd has been a site of internal colonization where the relationship of domination between colonizer and colonized is complex, longstanding and occurring within the imperial state. In doing so it demonstrates that the history and present of the Gaels of Scotland belongs within the ambit of an emerging indigenous research paradigm.


Author(s):  
Alison James

This book studies the documentary impulse that plays a central role in twentieth-century French literature. Focusing on nonfiction narratives, it analyzes the use of documents—pieces of textual or visual evidence incorporated into the literary work to relay and interrogate reality. It traces the emergence of an enduring concern with factual reference in texts that engage with current events or the historical archive. Writers idealize the document as a fragment of raw reality, but also reveal its constructed and mediated nature and integrate it as a voice within a larger composition. This ambivalent documentary imagination, present in works by Gide, Breton, Aragon, Yourcenar, Duras, and Modiano (among others), shapes the relationship of literature to visual media, testimonial discourses, and self-representation. Far from turning away from realism in the twentieth century, French literature often turns to the document as a site of both modernist experiment and engagement with the world.


2021 ◽  
Vol 22 (12) ◽  
pp. 6357
Author(s):  
Kinga Halicka ◽  
Joanna Cabaj

Sensors and biosensors have found applications in many areas, e.g., in medicine and clinical diagnostics, or in environmental monitoring. To expand this field, nanotechnology has been employed in the construction of sensing platforms. Because of their properties, such as high surface area to volume ratio, nanofibers (NFs) have been studied and used to develop sensors with higher loading capacity, better sensitivity, and faster response time. They also allow to miniaturize designed platforms. One of the most commonly used techniques of the fabrication of NFs is electrospinning. Electrospun NFs can be used in different types of sensors and biosensors. This review presents recent studies concerning electrospun nanofiber-based electrochemical and optical sensing platforms for the detection of various medically and environmentally relevant compounds, including glucose, drugs, microorganisms, and toxic metal ions.


Author(s):  
Cynthia Nagy ◽  
Robert Huszank ◽  
Attila Gaspar

AbstractThis paper aims at studying open channel geometries in a layer-bed-type immobilized enzyme reactor with computer-aided simulations. The main properties of these reactors are their simple channel pattern, simple immobilization procedure, regenerability, and disposability; all these features make these devices one of the simplest yet efficient enzymatic microreactors. The high surface-to-volume ratio of the reactor was achieved using narrow (25–75 μm wide) channels. The simulation demonstrated that curves support the mixing of solutions in the channel even in strong laminar flow conditions; thus, it is worth including several curves in the channel system. In the three different designs of microreactor proposed, the lengths of the channels were identical, but in two reactors, the liquid flow was split to 8 or 32 parallel streams at the inlet of the reactor. Despite their overall higher volumetric flow rate, the split-flow structures are advantageous due to the increased contact time. Saliva samples were used to test the efficiencies of the digestions in the microreactors. Graphical abstract


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1109
Author(s):  
Varnakavi. Naresh ◽  
Nohyun Lee

A biosensor is an integrated receptor-transducer device, which can convert a biological response into an electrical signal. The design and development of biosensors have taken a center stage for researchers or scientists in the recent decade owing to the wide range of biosensor applications, such as health care and disease diagnosis, environmental monitoring, water and food quality monitoring, and drug delivery. The main challenges involved in the biosensor progress are (i) the efficient capturing of biorecognition signals and the transformation of these signals into electrochemical, electrical, optical, gravimetric, or acoustic signals (transduction process), (ii) enhancing transducer performance i.e., increasing sensitivity, shorter response time, reproducibility, and low detection limits even to detect individual molecules, and (iii) miniaturization of the biosensing devices using micro-and nano-fabrication technologies. Those challenges can be met through the integration of sensing technology with nanomaterials, which range from zero- to three-dimensional, possessing a high surface-to-volume ratio, good conductivities, shock-bearing abilities, and color tunability. Nanomaterials (NMs) employed in the fabrication and nanobiosensors include nanoparticles (NPs) (high stability and high carrier capacity), nanowires (NWs) and nanorods (NRs) (capable of high detection sensitivity), carbon nanotubes (CNTs) (large surface area, high electrical and thermal conductivity), and quantum dots (QDs) (color tunability). Furthermore, these nanomaterials can themselves act as transduction elements. This review summarizes the evolution of biosensors, the types of biosensors based on their receptors, transducers, and modern approaches employed in biosensors using nanomaterials such as NPs (e.g., noble metal NPs and metal oxide NPs), NWs, NRs, CNTs, QDs, and dendrimers and their recent advancement in biosensing technology with the expansion of nanotechnology.


2020 ◽  
Vol 6 (3) ◽  
pp. 155-158
Author(s):  
Katharina Wulf ◽  
Volkmar Senz ◽  
Thomas Eickner ◽  
Sabine Illner

AbstractIn recent years, nanofiber based materials have emerged as especially interesting for several biomedical applications, regarding their high surface to volume ratio. Due to the superficial nano- and microstructuring and the different wettability compared to nonstructured surfaces, the water absorption is an important parameter with respect to the degradation stability, thermomechanic properties and drug release properties, depending on the type of polymer [1]. In this investigation, the water absorption of different non- and plasma modified biostable nanofiber nonwovens based on polyurethane, polyester and polyamide were analysed and compared. Also, the water absorption by specified water wetting, the contact angle and morphology changes were examined. The results show that the water uptake is highly dependent on the surface modification and the polymer composition itself and can therefore be partially changed.


Sign in / Sign up

Export Citation Format

Share Document