scholarly journals Jasmonic Acid-dependent MYC Transcription Factors Bind to a Tandem G-box Motif in the YUCCA8 and YUCCA9 Promoters to Regulate Biotic Stress Responses

Author(s):  
Marta-Marina Pérez-Alonso ◽  
Betriz Sánchez-Parra ◽  
Paloma Ortiz-García ◽  
Estrella Santamaría ◽  
Isabel Díaz ◽  
...  

The indole-3-pyruvic acid pathway is the major route for auxin biosynthesis in higher plants. Tryptophan aminotransferases (TAA1/TAR) and members of the YUCCA family of flavin-containing monooxygenases catalyze the conversion of L-tryptophan via indole-3-pyruvic acid into indole-3-acetic acid (IAA). It has been described that locally produced jasmonic acid (JA) in response to mechanical wounding, triggers de novo-formation of IAA through the induction of two YUCCA genes, YUC8 and YUC9. Here, we report the direct involvement of a small number of basic helix-loop-helix transcription factors of the MYC family in this process. We show that the JA-mediated regulation of YUC8 and YUC9 gene expression depends on the abundance of MYC2, MYC3, and MYC4. In support of this observation, seedlings of myc knockout mutants displayed a strongly reduced response to JA-mediated IAA formation. In addition, transactivation assays provided experimental evidence for the binding of the MYC transcription factors to a particular tandem G-box motif abundant in the promoter regions of YUC8 and YUC9, but not in those of the other YUCCA genes. Moreover, we clearly demonstrate that YUC8ox and YUC9ox overexpressing plants show less damage after spider mite infestation, thereby underlining a role of auxin in plant responses toward biotic stress cues.

2021 ◽  
Vol 22 (18) ◽  
pp. 9768
Author(s):  
Marta-Marina Pérez-Alonso ◽  
Beatriz Sánchez-Parra ◽  
Paloma Ortiz-García ◽  
Maria Estrella Santamaría ◽  
Isabel Díaz ◽  
...  

The indole-3-pyruvic acid pathway is the main route for auxin biosynthesis in higher plants. Tryptophan aminotransferases (TAA1/TAR) and members of the YUCCA family of flavin-containing monooxygenases catalyze the conversion of l-tryptophan via indole-3-pyruvic acid to indole-3-acetic acid (IAA). It has been described that jasmonic acid (JA) locally produced in response to mechanical wounding triggers the de novo formation of IAA through the induction of two YUCCA genes, YUC8 and YUC9. Here, we report the direct involvement of a small number of basic helix-loop-helix transcription factors of the MYC family in this process. We show that the JA-mediated regulation of the expression of the YUC8 and YUC9 genes depends on the abundance of MYC2, MYC3, and MYC4. In support of this observation, seedlings of myc knockout mutants displayed a strongly reduced response to JA-mediated IAA formation. Furthermore, transactivation assays provided experimental evidence for the binding of MYC transcription factors to a particular tandem G-box motif abundant in the promoter regions of YUC8 and YUC9, but not in the promoters of the other YUCCA isogenes. Moreover, we demonstrate that plants that constitutively overexpress YUC8 and YUC9 show less damage after spider mite infestation, thereby underlining the role of auxin in plant responses to biotic stress signals.


2020 ◽  
Vol 21 (4) ◽  
pp. 1446 ◽  
Author(s):  
Jia Wang ◽  
Li Song ◽  
Xue Gong ◽  
Jinfan Xu ◽  
Minhui Li

Jasmonic acid (JA) is an endogenous growth-regulating substance, initially identified as a stress-related hormone in higher plants. Similarly, the exogenous application of JA also has a regulatory effect on plants. Abiotic stress often causes large-scale plant damage. In this review, we focus on the JA signaling pathways in response to abiotic stresses, including cold, drought, salinity, heavy metals, and light. On the other hand, JA does not play an independent regulatory role, but works in a complex signal network with other phytohormone signaling pathways. In this review, we will discuss transcription factors and genes involved in the regulation of the JA signaling pathway in response to abiotic stress. In this process, the JAZ-MYC module plays a central role in the JA signaling pathway through integration of regulatory transcription factors and related genes. Simultaneously, JA has synergistic and antagonistic effects with abscisic acid (ABA), ethylene (ET), salicylic acid (SA), and other plant hormones in the process of resisting environmental stress.


Agronomy ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 788 ◽  
Author(s):  
Youngdae Yoon ◽  
Deok Hyun Seo ◽  
Hoyoon Shin ◽  
Hui Jin Kim ◽  
Chul Min Kim ◽  
...  

Abiotic stresses, such as drought, high temperature, and salinity, affect plant growth and productivity. Furthermore, global climate change may increase the frequency and severity of abiotic stresses, suggesting that development of varieties with improved stress tolerance is critical for future sustainable crop production. Improving stress tolerance requires a detailed understanding of the hormone signaling and transcriptional pathways involved in stress responses. Abscisic acid (ABA) and jasmonic acid (JA) are key stress-response hormones in plants, and some stress-responsive transcription factors such as ABFs and MYCs function as direct components of ABA and JA signaling, playing a pivotal role in plant tolerance to abiotic stress. In addition, extensive studies have identified other stress-responsive transcription factors belonging to the NAC, AP2/ERF, MYB, and WRKY families that mediate plant response and tolerance to abiotic stress. These suggest that transcriptional regulation of stress-responsive genes is an essential step to determine the mechanisms underlying plant stress responses and tolerance to abiotic stress, and that these transcription factors may be important targets for development of crops with enhanced abiotic stress tolerance. In this review, we briefly describe the mechanisms underlying plant abiotic stress responses, focusing on ABA and JA metabolism and signaling pathways. We then summarize the diverse array of transcription factors involved in plant responses to abiotic stress, while noting their potential applications for improvement of stress tolerance.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Hangxia Jin ◽  
Guangli Xu ◽  
Qingchang Meng ◽  
Fang Huang ◽  
Deyue Yu

GmNAC5 is a member of NAM subfamily belonging to NAC transcription factors in soybean (Glycine max(L.) Merr.). Studies on NAC transcription factors have shown that this family functioned in the regulation of shoot apical meristem (SAM), hormone signalling, and stress responses. In this study, we examined the expression levels ofGmNAC5.GmNAC5was highly expressed in the roots and immature seeds, especially strongly in immature seeds of 40 days after flowering. In addition, we found thatGmNAC5was induced by mechanical wounding, high salinity, and cold treatments but was not induced by abscisic acid (ABA). The subcellular localization assay suggested that GmNAC5 was targeted at nucleus. Together, it was suggested that GmNAC5 might be involved in seed development and abiotic stress responses in soybean.


2020 ◽  
Vol 21 (22) ◽  
pp. 8791
Author(s):  
Ming-Yan Cheung ◽  
Wan-Kin Auyeung ◽  
Kwan-Pok Li ◽  
Hon-Ming Lam

A class of proteins that were discovered to bind the immunosuppressant drug FK506, called FK506-binding proteins (FKBPs), are members of a sub-family of immunophilins. Although they were first identified in human, FKBPs exist in all three domains of life. In this report, a rice FKBP12 homolog was first identified as a biotic stress-related gene through suppression subtractive hybridization screening. By ectopically expressing OsFKBP12 in the heterologous model plant system, Arabidopsis thaliana, for functional characterization, OsFKBP12 was found to increase susceptibility of the plant to the pathogen, Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). This negative regulatory role of FKBP12 in biotic stress responses was also demonstrated in the AtFKBP12-knockout mutant, which exhibited higher resistance towards Pst DC3000. Furthermore, this higher-plant FKBP12 homolog was also shown to be a negative regulator of salt tolerance. Using yeast two-hybrid tests, an ancient unconventional G-protein, OsYchF1, was identified as an interacting partner of OsFKBP12. OsYchF1 was previously reported as a negative regulator of both biotic and abiotic stresses. Therefore, OsFKBP12 probably also plays negative regulatory roles at the convergence of biotic and abiotic stress response pathways in higher plants.


2021 ◽  
Author(s):  
Gegen Bao ◽  
Shengyu Li ◽  
Qi Zhou ◽  
Umair Ashraf ◽  
Jingxuan Qiao ◽  
...  

Abstract Background Aluminum (Al) contamination inhibits plant growth and development, however, mechanisms involved in Al stress tolerance in peanut (Arachis hypogaea L.) were rarely studied. The present study was comprised of four Al levels i.e., 0, 1.25, 2.5 and 5 mmol l−1 AlCl3.18H2O regarded as Al0, Al1, Al2, and Al3. The respective concentrations were added in Hoagland nutrient solution and replaced every three days. Result Results revealed that seeding length low Al concentration (Al1) treatment had no noticeable effect on seeding lenght, while higher Al concentration (Al2 and Al3) treatment significantly inhibited seeding lenght. The differentially expressed genes (DEGs) of plant hormone metabolism pathway were significantly enriched whereas the contents of salicylic acid (SA) and abscisic acid (ABA) were up-regulated, and jasmonic acid (JA) were down-regulated to different levels. Moreover, transcription factors (TFs) and ALMT9 and FRDL1 genes were up-regulated at higher Al concentration and down-regulated at the lowest Al concentration (Al1). Conclusions Overall, Higher Al concentrations up-regulated the expression of transcription factors (TFs), and ALMT9 and FRDL1 genes to resist the stress of high Al concentrations whereas transcriptome analysis revealed that Al stress tolerance is closely related to endogenous hormone contents i.e., salicylic acid (SA), abscisic acid (ABA), and jasmonic acid (JA). This study preliminarily analyzed the molecular mechanism of Al tolerance in peanut and provided a theoretical rationale for developing new Al-tolerant peanut cultivars.


Genes ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 771 ◽  
Author(s):  
Baillo ◽  
Kimotho ◽  
Zhang ◽  
Xu

In field conditions, crops are adversely affected by a wide range of abiotic stresses including drought, cold, salt, and heat, as well as biotic stresses including pests and pathogens. These stresses can have a marked effect on crop yield. The present and future effects of climate change necessitate the improvement of crop stress tolerance. Plants have evolved sophisticated stress response strategies, and genes that encode transcription factors (TFs) that are master regulators of stress-responsive genes are excellent candidates for crop improvement. Related examples in recent studies include TF gene modulation and overexpression approaches in crop species to enhance stress tolerance. However, much remains to be discovered about the diverse plant TFs. Of the >80 TF families, only a few, such as NAC, MYB, WRKY, bZIP, and ERF/DREB, with vital roles in abiotic and biotic stress responses have been intensively studied. Moreover, although significant progress has been made in deciphering the roles of TFs in important cereal crops, fewer TF genes have been elucidated in sorghum. As a model drought-tolerant crop, sorghum research warrants further focus. This review summarizes recent progress on major TF families associated with abiotic and biotic stress tolerance and their potential for crop improvement, particularly in sorghum. Other TF families and non-coding RNAs that regulate gene expression are discussed briefly. Despite the emphasis on sorghum, numerous examples from wheat, rice, maize, and barley are included. Collectively, the aim of this review is to illustrate the potential application of TF genes for stress tolerance improvement and the engineering of resistant crops, with an emphasis on sorghum.


2013 ◽  
Vol 73 (5) ◽  
pp. 761-775 ◽  
Author(s):  
Yusuke Nakai ◽  
Yoichi Nakahira ◽  
Hiroki Sumida ◽  
Kosuke Takebayashi ◽  
Yumiko Nagasawa ◽  
...  

2020 ◽  
Vol 71 (13) ◽  
pp. 3803-3815 ◽  
Author(s):  
Begoña Renau-Morata ◽  
Laura Carrillo ◽  
Jose Dominguez-Figueroa ◽  
Jesús Vicente-Carbajosa ◽  
Rosa V Molina ◽  
...  

Abstract In terrestrial environments, water and nutrient availabilities and temperature conditions are highly variable, and especially in extreme environments limit survival, growth, and reproduction of plants. To sustain growth and maintain cell integrity under unfavourable environmental conditions, plants have developed a variety of biochemical and physiological mechanisms, orchestrated by a large set of stress-responsive genes and a complex network of transcription factors. Recently, cycling DOF factors (CDFs), a group of plant-specific transcription factors (TFs), were identified as components of the transcriptional regulatory networks involved in the control of abiotic stress responses. The majority of the members of this TF family are activated in response to a wide range of adverse environmental conditions in different plant species. CDFs regulate different aspects of plant growth and development such as photoperiodic flowering-time control and root and shoot growth. While most of the functional characterization of CDFs has been reported in Arabidopsis, recent data suggest that their diverse roles extend to other plant species. In this review, we integrate information related to structure and functions of CDFs in plants, with special emphasis on their role in plant responses to adverse environmental conditions.


Sign in / Sign up

Export Citation Format

Share Document