scholarly journals Can WiMAX IEEE802 Be Used to Resolve Last-Mile Connectivity Issues in Botswana?

Author(s):  
Malebogo Mokeresete ◽  
Bukohwo Michael Esiefarienrhe

Amongst the advantages of using Worldwide Interoperability Microwave Access (WiMAX) technology at the last-mile level as access technology include an extensive range of 50 km Line of Sight (LOS), 5 to 15 km Non-Line of Sight and few infrastructure installations compared to other wireless broadband access technologies. Despite positive investments in ICT fibre infrastructure by developing countries, including Botswana, servicing end-users is subjected to high prices and service disparities. The alternative, the Wi-Fi hotspot initiative by the Botswana government, falls short as a solution for last-mile connectivity and access. This study used OPNET simulation Modeller 14,5 to investigate whether Botswana’s national broadband project could adopt WiMAX IEEE 802.16e as an access technology. Therefore, using the simulation method, this paper evaluates the WiMAX IEEE 802.16e/m over three subscriber locations in Botswana. The results obtained indicate that the deployment of the WiMAX IEEE 802.16e standard can solve most of the deployment issues and access at the last-mile level. Although the findings suggest that WiMAX IEEE 802.16e is more suitable for high-density areas, it could also solve rural areas’ infrastructure development challenges and provide the required high-speed connectivity access. However, unlike the Wi-Fi initiative, which requires more infrastructure deployment and less on institutional and regulatory frameworks, the deployment of WiMAX IEEE802.16e requires institutional and regulatory standards.

Author(s):  
Malebogo Mokeresete ◽  
Bukohwo Michael Esiefarienrhe

Amongst advantages of using Worldwide Interoperability Microwave Access (WiMAX) technology at the last-mile level as access technology include an extensive range of 50 km Line of Sight (LOS), 5 to 15 km Non-Line of Sight and few infrastructure installations compared to other wireless broadband access technologies. Despite positive investments in ICT fibre infrastructure by developing countries, including Botswana, servicing end-users is subjected to high prices and marginalised. The alternative, the Wi-Fi hotspot initiative by the Botswana government, falls far as a solution for last-mile connectivity and access. This study used OPNET simulation modeller 14,5 to investigate whether Botswana’s national broadband project could adopt WiMAX IEEE 802.16e as an access technology. Several developing countries in Africa and the world use WiMAX technology at access level and gain impressive results. The rampant lack of infrastructure development and the need to provide high-speed technology has necessitated such investigation. Therefore, using the simulation method, this paper evaluates the WiMAX IEEE 802.16e/m over three subscriber locations in Botswana. The results obtained indicate that the deployment of the WiMAX IEEE 802.16e standard can solve most of the deployment issues and access at the last-mile level. Although the findings suggest that WiMAX IEEE 802.16e is more suitable for high-density areas, it could also solve rural areas’ infrastructure development challenges and provide required high-speed connectivity access. However, unlike the Wi-Fi initiative, which requires more infrastructure deployment and less on institutional and regulatory frameworks, the deployment of WiMAX IEEE802.16e requires institutional and regulatory standards.


Author(s):  
P.I. Tarasov

Research objective: studies of economic and transport infrastructure development in the Arctic and Northern Territories of Russia. Research methodology: analysis of transport infrastructure in the Republic of Sakha (Yakutia) and the types of railways used in Russia. Results: economic development of any region is proportional to the development of the road transport infrastructure and logistics. When a conventional railway is operated in the Arctic conditions, it is not always possible to maintain a cargo turnover that would ensure its efficient use, and transshipment from one mode of transport to another is very problematic. A new type of railway is proposed, i.e. a light railway. Conclusions: the proposed new type of transport offers all the main advantages of narrow gauge railroads (high speed of construction, efficiency, etc.) and helps to eliminate their main disadvantage, i.e. the need for transloading when moving from a narrow gauge to the conventional one with the width of 1520 mm, along with a significant reduction in capital costs.


Agriculture ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 141
Author(s):  
Marcin Surówka ◽  
Łukasz Popławski ◽  
Helena Fidlerová

The work discusses issues of the infrastructure, its instruments, and specifics of infrastructure in Polish and Slovak rural areas. The aim of this article is to analyze the level of technical infrastructure development in rural regions of the Małopolskie Voivodeship in Poland and the west part of Slovakia—Trnava self-governing region (Trnava region) as two regions with a similar position regarding regional competitiveness index. Following the topic, after identification of strengths and weaknesses of mentioned regions, the opportunities, and threats of sustainable development of infrastructure in rural areas have been analyzed using the SWOT method. The development of sustainable, reliable, and functional infrastructure does not only refer to the chosen regions of Poland and Slovakia but also other regions in the European Union. Sustainable infrastructure is a factor stimulating social and economic progress as one of the most important determinants of sustainable development and regional competitiveness. The authors notice a particular lack in the sustainable development of infrastructure in the field of water and sewerage management together with the supply of water. Therefore, this article tries to complete the gap in research focusing on the concept of a more systematic approach to technical infrastructure improvement in the context of sustainable development, and strategy of cooperation.


2020 ◽  
pp. 1-24
Author(s):  
Jona Razzaque ◽  
Claire Lester

Abstract Sites of ancient woodland in the United Kingdom (UK) are diminishing rapidly and the multifunctional forest management system with its fragmented approach fails effectively to protect such woodland. In the face of reports on the destruction of ancient woodland, the HS2 High-Speed train project in the UK signifies the extent of trade-offs among the key stakeholders. Such large infrastructure projects typically come with high environmental and social costs, including deforestation, habitat fragmentation, biodiversity loss, and social disruption. This article examines the protection of ancient woodland in the UK and assesses the challenges in applying the ecosystem approach, an internationally recognized sustainability strategy, in the context of such protection. A better understanding of the ecosystem approach to manage ancient woodland is critical for promoting sustainable forestry practices in the UK and informs the discussion in this article of the importance of conserving ancient woodland globally. Lessons learned from UK woodland policies and certification schemes include the need to have in place strong regulatory frameworks, introduce clear indicators, and recognize pluralistic value systems alongside economic considerations. The article concludes that the protection of ancient woodland in the UK requires distinct and strong laws that reflect multiple values of this resource, acknowledge the trade-offs among stakeholders, and adopt an inclusive approach to reduce power asymmetries.


2017 ◽  
Vol 28 (10) ◽  
pp. 1750126 ◽  
Author(s):  
Yutong Liu ◽  
Chengxuan Cao ◽  
Yaling Zhou ◽  
Ziyan Feng

In this paper, an improved real-time control model based on the discrete-time method is constructed to control and simulate the movement of high-speed trains on large-scale rail network. The constraints of acceleration and deceleration are introduced in this model, and a more reasonable definition of the minimal headway is also presented. Considering the complicated rail traffic environment in practice, we propose a set of sound operational strategies to excellently control traffic flow on rail network under various conditions. Several simulation experiments with different parameter combinations are conducted to verify the effectiveness of the control simulation method. The experimental results are similar to realistic environment and some characteristics of rail traffic flow are also investigated, especially the impact of stochastic disturbances and the minimal headway on the rail traffic flow on large-scale rail network, which can better assist dispatchers in analysis and decision-making. Meanwhile, experimental results also demonstrate that the proposed control simulation method can be in real-time control of traffic flow for high-speed trains not only on the simple rail line, but also on the complicated large-scale network such as China’s high-speed rail network and serve as a tool of simulating the traffic flow on large-scale rail network to study the characteristics of rail traffic flow.


2021 ◽  
Vol 13 (5) ◽  
pp. 168781402110180
Author(s):  
Ruzhong Yan ◽  
Haojie Zhang

This study adopts the DMT(dynamic mesh technology) and UDF(user defined functions) co-simulation method to study the dynamic characteristics of aerostatic thrust bearings with equalizing grooves and compare with the bearing without equalizing groove under high speed or ultra high speed for the first time. The effects of air film thicness, supply pressure, rotation speed, perturbation amplitude, perturbation frequency, and cross section of the groove on performance characteristics of aerostatic thrust bearing are thoroughly investigated. The results show that the dynamic stiffiness and damping coefficient of the bearing with triangular or trapezoidal groove have obvious advantages by comparing with that of the bearing without groove or with rectangular groove for the most range of air film thickness, supply pressure, rotation speed, perturbation amplitude, especially in the case of high frequency, which may be due to the superposition of secondary throttling effect and air compressible effect. While the growth range of dynamic stiffness decreases in the case of high or ultra-high rotation speed, which may be because the Bernoulli effect started to appear. The perturbation amplitude only has little influence on the dynamic characteristic when it is small, but with the increase of perturbation amplitude, the influence becomes more obvious and complex, especially for downsized aerostatic bearing.


2018 ◽  
Vol 40 (3) ◽  
pp. 319-339 ◽  
Author(s):  
Anna Parkin ◽  
Manuel Herrera ◽  
David A Coley

One aim of zero carbon, or zero energy, buildings is to help slow climate change. However, regulatory definitions frequently miss substantial emissions, for example ones associated with the materials the building is constructed from, thereby compromising this goal. Unfortunately, including such emissions might restrict the design space, reduce architectural freedom or greatly increase costs. This work presents a new framework for examining the problem. The zero carbon/energy design and regulatory space forms a sub-space of the hyper-volume enclosing all possible designs and regulatory frameworks. A new mathematical/software environment was developed which allows the size and shape of this sub-space to be investigated for the first time. Twenty-four million building design/regulatory standard combinations were modelled and assessed using a tree classification approach. It was found that a worldwide zero standard that includes embodied emissions is possible and is easier to achieve if a carbon rather than an energy metric is adopted, with the design space twice the size for a carbon metric. This result is important for the development of more encompassing regulations, and the novel methods developed applicable to other aspects of construction controlled by regulation where there is the desire to examine the impact of new regulations prior to legislation. Practical application: As energy standards become more strict, and given the growth in non-regulatory standards (such as Passivhaus), there is the need to study the potential impact of any element of a standard on the range of designs that can be built or the materials that can be used. This work sets out a general framework and method for doing this. The approach and results will be of interest to policy makers, but also to engineers and architects wondering what the key constraints to design the adoption of various philosophies to low energy/carbon standards might have within their work. For example, the implications of the building standard (or client) requiring embodied emissions to be included or the energy balance period for renewable generation to be monthly, not annual.


Author(s):  
Ethèl Teljeur ◽  
Mayuree Chetty ◽  
Morné Hendriksz

Energy sector development is required to enable greater regional economic integration (harmonization of legal and regulatory frameworks for energy, coordination of energy infrastructure investments, etc.) in Africa. This can address problems associated with fractured energy infrastructure investment and allowing African nations to develop more shared facilities. In addition, regional integration facilitates trade of energy resources and services via sub-regional power pools. Despite the current attempts to integrate regional infrastructure via power pools, actual trade within these pools is low, and the opportunity to derive efficiencies from integrated regional resource planning is missed in favour of national plans. Different stages and design of energy market liberalization or (re-) regulation and the desire for energy self-sufficiency (“security of supply”) hinder the development of bilateral or multilateral projects. Investment in interconnection capacity is required to facilitate intra-power pool trade and achieve the efficiencies associated with the pooling of demand and integrated energy planning.


Sign in / Sign up

Export Citation Format

Share Document