scholarly journals Multifunctional Eco-Friendly Synthesis of ZnO Nanoparticles in Biomedical Applications

Author(s):  
Amal Mohamed Al-Mohaimeed ◽  
Wedad Altuhami Al-Onazi ◽  
Maha Farouk El-Tohamy

This study describes an eco-friendly synthesis of ZnO nanoparticles using aqueous oat extract. The advanced electrochemical and optical features of green synthesized ZnONPs displayed excellent antibacterial activity, and exhibited an important role in pharmaceutical determinations. The formation of nanoscale ZnO was confirmed using various spectroscopic and microscopic investigations. The formed nanoparticles were found to be around 100 nm. The as-prepared ZnONPs were monitored for their antibacterial potential against different bacterial strains. The inhibition zones for ZnONPs were found as E. coli (16 mm), P. aeruginosa (17 mm), S. aureus (12 mm) and B. subtilis (11 mm) using 30 µg mL-1 sample concentration. Also, ZnONPs exhibited significant antioxidant effects 58 to 67 % with an average IC50 value of 0.88 ± 0.03 scavenging activity and 53 to 71 % (IC50 value 0.73 ± 0.05) against the DPPH and ABTS scavenging free radicals, respectively. The photocatalytic potential of ZnONPs for Rhodamine B dye degradation dye under UV irradiation was performed. The photodegradation process was carried out as a function of time-dependent and the complete degradation (nearly 98 %) with color removal after 120 min. Conclusively, the synthesized ZnONPs using oat biomass might provide a great promise in the future for biomedical applications.

2003 ◽  
Vol 9 (5) ◽  
pp. 353-358 ◽  
Author(s):  
O. Sagdic ◽  
A. G. Karahan ◽  
M. Ozcan ◽  
G. Ozkan

Eighteen extracts of spices commonly consumed worldwide and grown naturally in Turkey were tested against twenty three bacterial strains to compare their antibacterial effects with eleven antibiotics. Eight pathogens and fifteen lactobacilli isolated from chick intestine were used as the test microorganisms. Pathogens (six different Staphylococcus aureus strains, Escherichia coli ATCC 25922 and Yersinia enterocolitica ATCC 1501) were grown in Nutrient broth and lactobacilli in MRS broth. Hop extracts formed inhibition zones against S. aureus strains of upto 36 mm. Inhibitory effects of hop extracts against S. aureuswere generally higher than that of erythromycin as antibiotic. Helichrysum compactum extract produced an inhibition zone of 23mm to E. coli ATCC 25922 and 26mm to Y. enterocolitica ATCC 1501. Helichrysum compactum extract inhibited the growth of Y. enterocolitica ATCC 1501 more than other spice extracts. While inhibition zones of these extracts against lactobacilli were found smaller than on S. aureus strains, inhibition zones of the same extracts against lactobacilli were found similar to those of E. coli ATCC 25922 and Y. enterocolitica ATCC 1501.


Author(s):  
Ekaterina A. Gavrilenko ◽  
Daria A. Goncharova ◽  
Ivan N. Lapin ◽  
Anna L. Nemoikina ◽  
Valery A. Svetlichnyi ◽  
...  

Here, we report on ZnO nanoparticles (NPs) generated by nanosecond pulsed laser (Nd:YAG, 1064 nm) through ablation of metallic Zn target in water and air and their comparative analysis as potential nanomaterials for biomedical applications. The prepared nanomaterials were carefully characterized in terms of their structure, composition, morphology and defects. It was found that in addition to the main wurtzite ZnO phase, which is conventionally prepared and reported by others, the sample laser-generated in air also contained some amount of monoclinic zinc hydroxynitrate. Both nanomaterials were then used to modify model wound dressings based on biodegradable poly-L-lactic acid. The as-prepared model dressings were tested as biomedical materials with bactericidal properties towards S. aureus and E. coli strains. The advantages of the NPs prepared in air over their counterparts generated in water found in this work are discussed.   


Materials ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 186 ◽  
Author(s):  
Ekaterina A. Gavrilenko ◽  
Daria A. Goncharova ◽  
Ivan N. Lapin ◽  
Anna L. Nemoykina ◽  
Valery A. Svetlichnyi ◽  
...  

Here, we report on ZnO nanoparticles (NPs) generated by nanosecond pulsed laser (Nd:YAG, 1064 nm) through ablation of metallic Zn target in water and air and their comparative analysis as potential nanomaterials for biomedical applications. The prepared nanomaterials were carefully characterized in terms of their structure, composition, morphology and defects. It was found that in addition to the main wurtzite ZnO phase, which is conventionally prepared and reported by others, the sample laser generated in air also contained some amount of monoclinic zinc hydroxynitrate. Both nanomaterials were then used to modify model wound dressings based on biodegradable poly l-lactic acid. The as-prepared model dressings were tested as biomedical materials with bactericidal properties towards S. aureus and E. coli strains. The advantages of the NPs prepared in air over their counterparts generated in water found in this work are discussed.


1999 ◽  
Vol 65 (6) ◽  
pp. 2762-2764 ◽  
Author(s):  
Sang Yup Lee ◽  
Jong-il Choi ◽  
Kyuboem Han ◽  
Ji Yong Song

ABSTRACT Poly(3-hydroxybutyrate) (PHB) was produced by cultivating several gram-negative bacteria, including Ralstonia eutropha,Alcaligenes latus, and recombinant Escherichia coli. PHB was recovered from these bacteria by two different methods, and the endotoxin levels were determined. When PHB was recovered by the chloroform extraction method, the endotoxin level was less than 10 endotoxin units (EU) per g of PHB irrespective of the bacterial strains employed and the PHB content in the cell. The NaOH digestion method, which was particularly effective for the recovery of PHB from recombinant E. coli, was also examined for endotoxin removal. The endotoxin level present in PHB recovered by 0.2 N NaOH digestion for 1 h at 30°C was higher than 104EU/g of PHB. Increasing the digestion time or NaOH concentration reduced the endotoxin level to less than 1 EU/g of PHB. It was concluded that PHB with a low endotoxin level, which can be used for various biomedical applications, could be produced by chloroform extraction. Furthermore, PHB with a much lower endotoxin level could be produced from recombinant E. coli by simple NaOH digestion.


2019 ◽  
Vol 81 (2) ◽  
Author(s):  
Nurul Amira Ahmad Yusof ◽  
Norashikin Mat Zain

Apart from biocompatibility, hydrogel films with good physical, morphology, swelling, and antibacterial properties are required for biomedical applications. In this study, the effects of nanofiller (i.e., zinc oxide (ZnO) nanoparticles) on physical, morphology, swelling, and antibacterial properties of hydrogel film were investigated. The new chitosan/gelatin/ZnO hydrogel films were synthesized using solution casting method by blending the chitosan and gelatin solutions with ZnO nanoparticles. The use of glycerol (plasticizing agent) could enhance the durability and flexibility of the hydrogel film. From the FTIR results, it was found that chemical reactions occurred of gelatin was between 1500 cm-1 to 800 cm-1. On the other hand, the SEM results showed that the pore size distribution within the hydrogel film varied from 20µm to 700µm. The antibacterial properties ZnO hydrogel film against bacteria such as Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) were evaluated using the zone of inhibition method. The antibacterial activity (against the S. aureus bacteria) of the new ZnO hydrogel film was more promising than that of the nanoparticle-free hydrogel film. The current findings showed that the new chitosan/gelatin/ZnO hydrogel film could be used in biomedical application. 


2020 ◽  
Vol 20 (3) ◽  
pp. 722
Author(s):  
Erwin Abdul Rahim ◽  
Nur Istiqomah ◽  
Gilang Almilda ◽  
Ahmad Ridhay ◽  
Ni Ketut Sumarni ◽  
...  

This study was aimed to prepare polyeugenol with high molecular weight and to evaluate its antibacterial and antioxidant activities. First, polyeugenol was synthesized from eugenol in the presence of H2SO4-CH3COOH (4:1) as catalyst. The synthesized polyeugenol was weighed by using viscometer, revealing its high molecular weight of (7.76–21.9) × 105 g/mol. Furthermore, the antibacterial activity of the polyeugenol was conducted against Staphylococcus aureus and Escherichia coli bacteria. It was conducted by applying well diffusion method at 1, 2, 3, 4 and 5% concentrations to observe inhibition zones, in which the tests showed that the antibacterial activity of the polyeugenol against S. aureus were 17.42, 17.76, 18.79, 21.42 and 22.55 mm, while those against E. coli were 15.87, 17.23, 17.56, 18.24 and 19.21 mm, respectively. In short, these results indicated a strong antibacterial activity. Then, tests on antioxidant activity against free radical DPPH (2,2-diphenyl-1-pycrylhydrazyl) gave the IC50 value of 80.47 µg/mL, indicating a strong antioxidant activity. Therefore, the polymer synthesized in this work has a high potential to be applied in various biomedical applications.


2006 ◽  
Vol 14 (5) ◽  
pp. 330-333 ◽  
Author(s):  
Caroline Sousa Ribeiro ◽  
Fernanda Akemi Kuteken ◽  
Raphael Hirata Júnior ◽  
Miriam F. Zaccaro Scelza

The present study aimed to evaluate and compare the antimicrobial effect of MTA Dentsply, MTA Angelus, Calcium Hydroxide and Portland cement. Four reference bacterial strains were used: Pseudomonas aeruginosa, Escherichia coli, Bacteroides fragilis, and Enterococcus faecalis. Plates containing Mueller-Hinton agar supplemented with 5% sheep blood, hemin, and menadione were inoculated with the bacterial suspensions. Subsequently, wells were prepared and immediately filled with materials and incubated at 37ºC for 48 hours under anaerobic conditions, except P. aeruginosa. The diameters of inhibition zones were measured, and data analyzed using ANOVA and the Tukey test with 1% level of significance. MTA Dentsply, MTA Angelus and Portland cement inhibited the growth of P. aeruginosa. Calcium Hydroxide was effective against P. aeruginosa and B. fragillis. Under anaerobic conditions, which may hamper the formation of reactive oxygen species, the materials failed to inhibit E. faecalis, and E. coli.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hamada H. Amer ◽  
Essam Hassan Eldrehmy ◽  
Salama Mostafa Abdel-Hafez ◽  
Youssef Saeed Alghamdi ◽  
Magdy Yassin Hassan ◽  
...  

AbstractA new series of nucleosides, moieties, and Schiff bases were synthesized from sulfadimidine. Infrared (IR), 1HNMR, 13C NMR, and mass spectrometry techniques and elemental analysis were employed to elucidate the synthesized compounds. The prepared analogues were purified by different chromatographic techniques (preparative TLC and column chromatography). Molecular docking studies of synthesized compounds 3a, 4b, 6a, and 6e demonstrated the binding mode involved in the active site of DNA gyrase. Finally, all synthesized compounds were tested against selected bacterial strains. The most effective synthesized compounds against S. aureus were 3a, 4d, 4b, 3b, 3c, 4c, and 6f, which exhibited inhibition zones of inhibition of 24.33 ± 1.528, 24.67 ± 0.577, 23.67 ± 0.577, 22.33 ± 1.528, 18.67 ± 1.528 and 19.33 ± 0.577, respectively. Notably, the smallest zones were observed for 4a, 6d, 6e and 6g (6.33 ± 1.528, 11.33 ± 1.528, 11.67 ± 1.528 and 14.66 ± 1.155, respectively). Finally, 6b and 6c gave negative zone values. K. pneumoniae was treated with the same compounds and the following results were obtained. The most effective compounds were 4d, 4c, 4b and 3c, which showed inhibition zones of 29.67 ± 1.528, 24.67 ± 0.577, 23.67 ± 1.155 and 19.33 ± 1.528, respectively, followed by 4a and 3d (15.33 ± 1.528 for both), while moderate results (13.67 ± 1.155 and 11.33 ± 1.528) were obtained for 6f and 6g, respectively. Finally, 6a, 6b, 6c, 3a, and 3b did not show any inhibition. The most effective compounds observed for the treatment of E. coli were 4d, 4b, 4c, 3d, 6e and 6f (inhibition zones of 26.33 ± 0.577, 21.67 ± 1.528, 21.67 ± 1.528, 19.67 ± 1.528, 17.67 ± 1.155 and 16.67 ± 1.155, respectively). Compounds 3b, 3c, 6a, 6c, and 6g gave moderate results (13.67 ± 1.528, 12.67 ± 1.528, 11.33 ± 0.577, 15.33 ± 1.528 and 12.67 ± 1.528, respectively), while 6b showed no effect. The MIC values against S. aureus ranged from 50 to 3.125 mg, while those against E. coli and K. pneumoniae ranged from 50 to 1562 mg. In vitro, the antibacterial effects were promising. Further research is required to study the in vivo antibacterial effects of these compounds and determine therapeutic doses.


Author(s):  
Singh Gurvinder ◽  
Singh Prabhsimran ◽  
Dhawan R. K.

In order to develop new antimicrobial agents, a series of 3-formyl indole based Schiff bases were synthesized by reacting 3-formyl indole(indole-3-carboxaldehyde) with substituted aniline taking ethanol as solvent. The reaction was carried in the presence of small amount of p-toluene sulphonic acid as catalyst.All the synthesized compounds were characterized by IR, 1H-NMR spectral analysis. All the synthesized compounds were evaluated for antimicrobial activity against two gram positive bacterial strains (B. subtilisand S. aureus) and two gram negative bacterial strains (P. aeruginosaand E. coli) and one fungal strain (C. albicans). All the synthesized compounds were found to have moderate to good antimicrobial activity. The  standard drug amoxicillin, fluconazole were used for antimicrobial activity. Among the synthesized compounds, the maximum antimicrobial activity was shown by compounds GS04, GS07, GS08 and GS10.


Author(s):  
Umadevi M ◽  
Rani T ◽  
Balakrishnan T ◽  
Ramanibai R

Nanotechnology has great promise for improving the therapeutic potential of medicinal molecules and related agents. In this study, silver nanoparticles of different sizes were synthesized in an ultrasonic field using the chemical reduction method with sodium borohydride as a reducing agent. The size effect of silver nanoparticles on antimicrobial activity were tested against the microorganisms Staphylococcus aureus (MTCC No. 96), Bacillus subtilis (MTCC No. 441), Streptococcus mutans (MTCC No. 497), Escherichia coli (MTCC No. 739) and Pseudomonas aeruginosa (MTCC No. 1934). The results shows that B. subtilis, and E. coli were more sensitive to silver nanoparticles and its size, indicating the superior antimicrobial efficacy of silver nanoparticles. 


Sign in / Sign up

Export Citation Format

Share Document