scholarly journals Genetics, Molecular Control and Clinical Relevance of Habituation Learning

Author(s):  
Laura E.R. Blok ◽  
Marina Boon ◽  
Boyd van Reijmersdal ◽  
Kira D. Höffler ◽  
Michaela Fenckova ◽  
...  

Habituation, the most ancient and fundamental form of learning, manifests already before birth. Neuroscientists have been fascinated for decades by its function as a firewall protecting our brains from sensory information overload and its indispensability for higher cognitive processing. Evidence that habituation learning is affected in autism and related monogenic neurodevelopmental syndromes and their animal models has exponentially grown, but the potential of this convergence to advance both fields is still largely unexploited.In this review, we provide a systematic overview of the genes that to date have been demonstrated to underlie habituation across species. We describe the biological processes they converge on, and highlight core regulatory pathways and repurposable drugs that may alleviate the habituation deficits associated with their dysregulation. We also summarize currently used habituation paradigms and extract the most important arguments from literature that support the crucial role of habituation for cognition in health and disease. We conclude that habituation is a powerful tool to overcome current bottlenecks in research, diagnostics and treatment of neurodevelopmental disorders.

MicroRNA ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Sara Tomei ◽  
Harshitha Shobha Manjunath ◽  
Selvasankar Murugesan ◽  
Souhaila Al Khodor

: MicroRNAs (miRNAs) are non-coding RNAs ranging from 18-24 nucleotides also known to regulate the human genome mainly at the post-transcriptional level. MiRNAs were shown to play an important role in most biological processes such as apoptosis and in the pathogenesis of many diseases such as cardiovascular diseases and cancer. Recent developments of advanced molecular high-throughput technologies have enhanced our knowledge of miRNAs. MiRNAs can now be discovered, interrogated, and quantified in various body fluids, and hence can serve as diagnostic and therapeutic markers for many diseases. While most studies use blood as a sample source to measure circulating miRNAs as possible biomarkers for disease pathogenesis, fewer studies have assessed the role of salivary miRNAs in health and disease. This review aims at providing an overview of the current knowledge of the salivary miRNome, addressing the technical aspects of saliva sampling and highlighting the applicability of miRNA screening to clinical practice.


Open Medicine ◽  
2012 ◽  
Vol 7 (4) ◽  
pp. 409-419 ◽  
Author(s):  
Muhammad Manwar Hussain ◽  
Mukhtarul Hassan ◽  
Noor Shaik ◽  
Zeeshan Iqbal

AbstractAccording to the universal biological findings, cellular bodies are covered with an intense coating of glycans. Diversity of glycan chains, linked to lipids and proteins is due to isomeric and conformational modifications of various sugar residues, giving rise to unique carbohydrate structures with a wide range of sequences and anomeric configurations. Proteins and lipids, carrying specific sugar residues (like Galactose) with particular stereochemical properties (sequence, anomery and linkages) are involved in broad spectrums of biological processes, including intercellular and intracellular interactions, microbial adhesion and cellular signaling. By studying the role of specific seterochemical features of galactose (Gal), we have improved our understanding about the normal physiology and diseases in human bodies.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Guillermo Barturen ◽  
Stefanie Geisen ◽  
Francisco Dios ◽  
E. J. Maarten Hamberg ◽  
Michael Hackenberg ◽  
...  

Hypomethylated, CpG-rich DNA segments (CpG islands, CGIs) are epigenome markers involved in key biological processes. Aberrant methylation is implicated in the appearance of several disorders as cancer, immunodeficiency, or centromere instability. Furthermore, methylation differences at promoter regions between human and chimpanzee strongly associate with genes involved in neurological/psychological disorders and cancers. Therefore, the evolutionary comparative analyses of CGIs can provide insights on the functional role of these epigenome markers in both health and disease. Given the lack of specific tools, we developedCpGislandEVO. Briefly, we first compile a database of statistically significant CGIs for the best assembled mammalian genome sequences available to date. Second, by means of a coupled browser front-end, we focus on the CGIs overlapping orthologous genes extracted fromOrthoDB, thus ensuring the comparison between CGIs located on truly homologous genome segments. This allows comparing the main compositional features between homologous CGIs. Finally, to facilitate nucleotide comparisons, we lifted genome coordinates between assemblies from different species, which enables the analysis of sequence divergence by direct count of nucleotide substitutions and indels occurring between homologous CGIs. The resultingCpGislandEVOdatabase, linking together CGIs and single-cytosine DNA methylation data from several mammalian species, is freely available at our website.


2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Ting Zhang ◽  
Malgorzata A. Garstka ◽  
Ke Li

After the discovery of the C5a receptor C5aR1, C5aR2 is the second receptor found to bind C5a and its des-arginine form. As a heptahelical G protein-coupled receptor but devoid of the intracellular Gα signal, C5aR2 is special and confusing. Ramifications and controversies about C5aR2 are under debate since its identification, from putative ligands and cellular localization to intracellular signals and pathological roles in inflammation and immunity. The ruleless and even conflicting pro- or anti-inflammatory role of C5aR2 in animal models of diverse diseases makes one bewildered. This review summarizes reports on C5aR2, tries to clear up available evidence on these four controversial aspects, and delineates C5aR2 function(s). It also summarizes available toolboxes for C5aR2 study.


2020 ◽  
Vol 54 (1) ◽  
pp. 47-69 ◽  
Author(s):  
Zhangli Su ◽  
Briana Wilson ◽  
Pankaj Kumar ◽  
Anindya Dutta

As one of the most abundant and conserved RNA species, transfer RNAs (tRNAs) are well known for their role in reading the codons on messenger RNAs and translating them into proteins. In this review, we discuss the noncanonical functions of tRNAs. These include tRNAs as precursors to novel small RNA molecules derived from tRNAs, also called tRNA-derived fragments, that are abundant across species and have diverse functions in different biological processes, including regulating protein translation, Argonaute-dependent gene silencing, and more. Furthermore, the role of tRNAs in biosynthesis and other regulatory pathways, including nutrient sensing, splicing, transcription, retroelement regulation, immune response, and apoptosis, is reviewed. Genome organization and sequence variation of tRNA genes are also discussed in light of their noncanonical functions. Lastly, we discuss the recent applications of tRNAs in genome editing and microbiome sequencing.


Nutrients ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 2532
Author(s):  
Ludovica Bartiromo ◽  
Matteo Schimberni ◽  
Roberta Villanacci ◽  
Jessica Ottolina ◽  
Carolina Dolci ◽  
...  

The aim of this systematic review was to provide comprehensive and available data on the possible role of phytoestrogens (PE) for the treatment of endometriosis. We conducted an advanced, systematic search of online medical databases PubMed and Medline. Only full-length manuscripts written in English up to September 2020 were considered. A total of 60 studies were included in the systematic review. According to in vitro findings, 19 out of 22 studies reported the ability of PE in inducing anti-proliferative, anti-inflammatory and proapoptotic effects on cultured cells. Various mechanisms have been proposed to explain this in vitro action including the alteration of cell cycle proteins, the activation/inactivation of regulatory pathways, and modification of radical oxidative species levels. Thirty-eight articles on the effects of phytoestrogens on the development of endometriotic lesions in in vivo experimental animal models of endometriosis have been included. In line with in vitro findings, results also derived from animal models of endometriosis generally supported a beneficial effect of the compounds in reducing lesion growth and development. Finally, only seven studies investigated the effects of phytoestrogens intake on endometriosis in humans. The huge amount of in vitro and in vivo animal findings did not correspond to a consistent literature in the women affected. Therefore, whether the experimental findings can be translated in women is currently unknown.


2019 ◽  
Vol 9 (10) ◽  
pp. 265 ◽  
Author(s):  
Schepici ◽  
Cavalli ◽  
Bramanti ◽  
Mazzon

Autism spectrum disorder (ASD) is a complex neuropsychiatric disorder characterized by deficits in social interactions, communication, language, and in a limited repertoire of activities and interests. The etiology of ASD is very complex. Genetic, epigenetic, and environmental factors contribute to the onset of ASD. Researchers have shown that microRNAs (miRNAs) could be one of the possible causes associated with ASD. miRNAs are small noncoding mRNAs that regulate gene expression, and they are often linked to biological processes and implicated in neurodevelopment. This review aims to provide an overview of the animal models and the role of the different miRNAs involved in ASD. Therefore, the use of animal models that reproduce the ASD and the identification of miRNAs could be a useful predictive tool to study this disorder.


2020 ◽  
Vol 20 (4) ◽  
pp. 272-276
Author(s):  
Rachel Coomey ◽  
Rianne Stowell ◽  
Ania Majewska ◽  
Daniela Tropea

The development of new therapeutics is critically dependent on an understanding of the molecular pathways, the disruption of which results in neurological symptoms. Genetic and biomarker studies have highlighted immune signalling as a pathway that is impaired in patients with neurodevelopmental disorders (NDDs), and several studies on animal models of aberrant neurodevelopment have implicated microglia, the brain’s immune cells, in the pathology of these diseases. Despite the increasing awareness of the role of immune responses and inflammation in the pathophysiology of NDDs, the testing of new drugs rarely considers their effects in microglia. In this brief review, we present evidence of how the study of microglia can be critical for understanding the mechanisms of action of candidate drugs for NDDs and for increasing their therapeutic effect.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Sandra Gallach ◽  
Silvia Calabuig-Fariñas ◽  
Eloisa Jantus-Lewintre ◽  
Carlos Camps

MicroRNAs are one class of small, endogenous, non-coding RNAs that are approximately 22 nucleotides in length; they are very numerous, have been phylogenetically conserved, and involved in biological processes such as development, differentiation, cell proliferation, and apoptosis. MicroRNAs contribute to modulating the expression levels of specific proteins based on sequence complementarity with their target mRNA molecules and so they play a key role in both health and disease. Angiogenesis is the process of new blood vessel formation from preexisting ones, which is particularly relevant to cancer and its progression. Over the last few years, microRNAs have emerged as critical regulators of signalling pathways in multiple cell types including endothelial and perivascular cells. This review summarises the role of miRNAs in tumour angiogenesis and their potential implications as therapeutic targets in cancer.


Sign in / Sign up

Export Citation Format

Share Document