Green Modular Design by the Concept of Chemical Activation Energy

2014 ◽  
Vol 8 (5) ◽  
pp. 716-722 ◽  
Author(s):  
Shana S. Smith ◽  
◽  
Wei-Zhe Wang

Due to increasing environmental concerns, natural resource use must become more efficient. As a result, green design is now an important research topic. The goal of this study was to create a green modular design method using the concept of chemical activation energy. The method uses five product functions and five product attributes that affect green performance to group parts into functional modules and then group parts into green modules within each functional module. Considering both product functions and environmental factors ensures the functional feasibility of the modules that are created and also improves the green performance of the product. The method developed in this study was used to group parts into functional modules and green modules for an LCD monitor. The study results can be used to help designers create new green products or improve the green performance of existing products.

2011 ◽  
Vol 80-81 ◽  
pp. 1198-1202
Author(s):  
Zhi Wei Xu ◽  
Yong Xian Liu

A multi-dimensional module partition methodology is put forward for CNC lathe, in which not only the functional module partition and the physical structure module partition of CNC machine tools are taken into account, but the characteristics of different stages of in the whole life-cycle of machine tools is considered as well. On the basis of this the principle of module partition for CNC machine tools are presented. The mechanical structure system of CNC lathe is elaborated on the functional module and structural module. A CNC machine tool company’s HTC Series CNC lathes modular design is illustrated as an example.


2008 ◽  
Vol 392-394 ◽  
pp. 661-666
Author(s):  
Jiang Hua Ge ◽  
Ya Ping Wang ◽  
Guo An Gao ◽  
Yong Tao Huang ◽  
Y.L. Xu

Based on product configuration and modular design, a product rapid design method for customer individual requirements was proposed. Aiming at the product configuration correlation of this product rapid design method, we classify the product in accordance with the product functional modular classification principle, define the correlation between the functional modules, set up the correlation matrix between each module and recognize the customer demand of individual product configuration immediately by using the exclusion algorithm. At last, taking multimedia LCD projector as paradigm, we verify this method.


2020 ◽  
Vol 38 (10A) ◽  
pp. 1481-1488
Author(s):  
Tariq M. Hammza ◽  
Ehab N. Abas ◽  
Nassear R. Hmoad

The values of Many parameters which involve in the design of fluid film journal bearings mainly depend on the bearing applied load when using the conventional design method to design the journal bearings, in this study, as well as applied bearing load, the dynamic response and critical speed have been used to calculate the dimensions of journal bearings. In the field of rotating machine, especially a heavy-duty rotating machines, the critical speed and response are the main parameters that specify bearing dimensions. The bearing aspect ratio (bearing length to bore diameter) and bearing clearance have been determined based on rotor maximum critical speed and minimum response displacement. The analytical solution of rotor Eq. of motion was verified by numerical solution via using ANSYS Mechanical APDL 18.0 and by comparing the numerical solution with the preceding study. The final study results clearly showed that the bearing aspect ratio has little effect on the critical speed, but it has a high effect on the dynamic response also the bearing clearance has little effect on the critical speed and considerable effect on the dynamic response. The study showed that the more accurate values of bearing aspect ratio to make the response of rotor as low as possible are about 0.65 - 1 and bearing percent clearance is about 0.15 - 0.2 for different rotor dimensions.


2021 ◽  
pp. 002199832110370
Author(s):  
Tihomir Kovačević ◽  
Saša Brzić ◽  
Melina Kalagasidis Krušić ◽  
Jovica Nešić ◽  
Ljubica Radović ◽  
...  

Two types of polymer waste materials, poly(ethylene terephthalate) (PET) and polycarbonate based Colombian Resin (CR-39), were used for the designing of fully recycled composite materials. Waste PET was employed for the synthesis of thermoset unsaturated polyester resin (UPR), while CR-39 was used as reinforcement in the UPR matrix. Prior to mixing, CR-39 particles were subjected to oxidation and chemical activation using acids/base and ethanol amine, respectively. The effect of the modifier type and variable loading of the activated CR-39 particles on mechanical and dynamic-mechanical properties of the corresponding composites was investigated. The greatest improvement in the tensile and flexural strength of UPR resin was achieved with the composite containing 0.5 wt% of amine activated filler particles, 96.0% and 62.2%, respectively. The Arrhenius equation was used to calculate the activation energy for glass transition from dynamic mechanical properties measured at various frequencies. The activation energy of the main transition for UPR resin and composites were calculated to be 173 and 350 kJ·mol−1 indicating that reinforcement results in an increase in the energy barrier to macromolecules viscoelastic relaxation. In addition, erosion resistance was studied during exposure of samples to cavitation tests. According to the obtained results, these materials can be applied in construction and mining industry.


2021 ◽  
Vol 13 (7) ◽  
pp. 168781402110343
Author(s):  
Mei Yang ◽  
Yimin Xia ◽  
Lianhui Jia ◽  
Dujuan Wang ◽  
Zhiyong Ji

Modular design, Axiomatic design (AD) and Theory of inventive problem solving (TRIZ) have been increasingly popularized in concept design of modern mechanical product. Each method has their own advantages and drawbacks. The benefit of modular design is reducing the product design period, and AD has the capability of problem analysis, while TRIZ’s expertise is innovative idea generation. According to the complementarity of these three approaches, an innovative and systematic methodology is proposed to design big complex mechanical system. Firstly, the module partition is executed based on scenario decomposition. Then, the behavior attributes of modules are listed to find the design contradiction, including motion form, spatial constraints, and performance requirements. TRIZ tools are employed to deal with the contradictions between behavior attributes. The decomposition and mapping of functional requirements and design parameters are carried out to construct the structural hierarchy of each module. Then, modules are integrated considering the connections between each other. Finally, the operation steps in application scenario are designed in temporal and spatial dimensions. Design of cutter changing robot for shield tunneling machine is taken as an example to validate the feasibility and effectiveness of the proposed method.


2014 ◽  
Vol 716-717 ◽  
pp. 1518-1521
Author(s):  
Shu Fang ◽  
Yan Xu ◽  
Fei Dong

The manufacture of fire robot has characteristics such as different types and piece production, and flexible manufacture and cost control of the fire robot must be considered due to these characteristics. In this paper, the similarity of fire robot’s working environment was analyzed, The demand of chassis’s adaptability and the method using general technical platform were discussed with the thinking of modular design, and new series fire robots which composed of the general platform and different function modules were proposed, and the manufacture cost of traditional design method and modular design method were compared in using the activity-based costing method, and under the new design method the manufacture cost were decreased extremely.


2014 ◽  
Vol 687-691 ◽  
pp. 3102-3105
Author(s):  
Qin Zhang

Integration with Internet is the development tendency of industrial control network, and embedded Internet technique is the key of implementation. By analyzing field bus Technology and combining actual demand, the paper proposes dial-up high-density programmable logic device solution of remote embedded measurement and control equipment. For the purpose of implementing reuse of design modules and upgrading requirement, the paper systematically expounds top-down hierarchy design method for implementing functional module division. According to the difference of implementation complexity because of the difference of functions, the paper finally analyzes the characteristics and applications of programmable device, and proposes the improvement direction.


2014 ◽  
Vol 1049-1050 ◽  
pp. 828-832
Author(s):  
J.R. Yang

The aim of this study was to obtain the method of the green design and modular design that oriented construction machinery products. A variety of modern design tools such as the finite element analysis software package and optimize design package and a two-factor evaluation fuzzy modelare used to analyze and Evaluation the green degree and the module degree of the construction machinery. Some modern mathematical tools such as AHP and fuzzy comprehensive evaluation method are used to calculate and evaluate the green degree and the module degree in construction machinery design. The proposed design method can meet the requirements of the green degree and the module degree of the construction machinery.


2014 ◽  
Vol 599-601 ◽  
pp. 358-361
Author(s):  
Huan Qiang ◽  
Hu Zhang ◽  
Yan Zhou

A design method of modular joint is proposed according to the complicated structure, line exposed and heavier characteristics of multi-DOF (degree of freedom) mechanical arm. In this paper, the design of modular joint was carried on and a model of six-DOF mechanical arm was built through the research on the structure of mechanical arm. On this basis, dynamics simulation will be carried. The results show that the modular design method simplified the structure of the mechanical arm, the dynamics simulation proved it was feasible for the structure design and drive selection.


2021 ◽  
Author(s):  
Benbo Gao ◽  
Jing Zhu ◽  
Soumya Negi ◽  
Xinmin Zhang ◽  
Stefka Gyoneva ◽  
...  

AbstractSummaryWe developed Quickomics, a feature-rich R Shiny-powered tool to enable biologists to fully explore complex omics data and perform advanced analysis in an easy-to-use interactive interface. It covers a broad range of secondary and tertiary analytical tasks after primary analysis of omics data is completed. Each functional module is equipped with customized configurations and generates both interactive and publication-ready high-resolution plots to uncover biological insights from data. The modular design makes the tool extensible with ease.AvailabilityResearchers can experience the functionalities with their own data or demo RNA-Seq and proteomics data sets by using the app hosted at http://quickomics.bxgenomics.com and following the tutorial, https://bit.ly/3rXIyhL. The source code under GPLv3 license is provided at https://github.com/interactivereport/[email protected], [email protected] informationSupplementary materials are available at https://bit.ly/37HP17g.


Sign in / Sign up

Export Citation Format

Share Document