Design and Modeling of Soft Pneumatic Helical Actuator with High Contraction Ratio

2020 ◽  
Vol 32 (5) ◽  
pp. 1061-1070
Author(s):  
Peizheng Yuan ◽  
◽  
Ginjiro Kawano ◽  
Hideyuki Tsukagoshi

Soft contraction actuators are becoming important elements particularly for human-friendly robotic applications. However, it is challenging to achieve both a large operating distance while generating practical force. Hence, we present a new soft contraction actuator capable of realizing a high ratio contraction by pneumatic power. It can be easily fabricated using soft materials, including rubber tubes, one-way extensible cloth, and inextensible wire. Its initial shape is tubular but it can curve and coil to a helix shape owing to its different extensibilities on two sides when pressurized. A maximum contraction ratio of 78% and a 23 N contraction force can be achieved with an 11.6 mm initial outer diameter tube under 0.3 MPa. The effect of the tilt angle of a one-way extensible cloth on the helical shape is investigated, and a mathematical model illustrating the relationship between the contraction ratio and force is derived. Our experimental results suggest that this helical actuator has a much higher contraction ratio than a McKibben actuator under the same conditions. Finally, we discuss the potential application of the proposed actuator to a wearable device, i.e., for assisting the dorsiflexion of an ankle joint requiring a wide range of motion.

2016 ◽  
Vol 138 (8) ◽  
Author(s):  
K. K. Botros

The relationships between the sand grain roughness height (ks) in use with Nikuradse or Colebrook correlations for the roughness function (RF) and the internal pipe wall roughness element described by the root-mean-square (RMS) of the roughness profile (Rq) for turbulent flow in pipes are experimentally examined. Flow tests were conducted on a total of 13 commercial steel pipes of two sizes: 168.3 mm and 114.3 mm outer diameter (OD). The aim was to provide further insight into relationship between ks and Rq, for use with either RF correlations. The tests were conducted on high-pressure pipeline quality natural gas in the range of Reynolds number (based on pipe internal diameter) of 9 × 106–16 × 106. For commercial carbon steel pipes, the relationship between ks and Rq was found in the form ks=1.306  Rq+0.078  Rq2 and ks=2.294  Rq (both ks and Rq in μm), for use with Colebrook and Nikuradse RF correlations, respectively. These correlations cover a wide range of Rq from 2.7 μm to 12.5 μm which is typically found in commercial carbon steel pipes. For stainless steel (SS) pipes, preliminary results indicate that other surface roughness profile parameters need to be employed to better define the values of ks for these types of commercial steel pipes.


1983 ◽  
Vol 101 (3) ◽  
pp. 513-516 ◽  
Author(s):  
B. L. McIntyre ◽  
W. J. Ryan

SUMMARYA total of 25 steer carcasses from a wide range of breeds and carcass weight and fatness were used to examine the relationship between a range of fat thickness measurements and the dissected fat content of beef carcasses. Fat thickness measurements included those on the hot carcass suitable for ‘commercial’ use and others on the cold carcass commonly used in research.The mean of the measurements of fat thickness from the two sides of the hot carcass between the 12th and 13th ribs (12H) gave the most accurate prediction of carcass fat content (FPCT). The relationship was described by the equation FPCT = 14·61 + 1·85 (12H) (R2 = 0·92; S.E. of prediction of individual FPCT at the mean= ±2·17%).The mean of four fat thickness measurements made on the quartered surface between the 10th and 11th ribs of the cold carcass was the next most accurate predictor (S.E. = 2·28%) of fat content. Fat thickness measurements made on the hot carcass between the 10th and 11th ribs were the least satisfactory.Although the hot carcass measurements between the 12th and 13th ribs were made under commercial conditions and included a wide range of types of cattle the prediction of fat content from these measurements had a marginally lower standard error than the prediction based on measurements made under experimental conditions.


2010 ◽  
Vol 18 ◽  
pp. 24 ◽  
Author(s):  
Lisa Michele Stulberg

The public narrative generally frames teachers unions and the charter movement as mistrustful opponents locked in an unresolved impasse. There is little scholarly literature to correct this simplistic narrative of the relationship between charters and unions. This article examines the teachers union- charter relationship through a recent case of active and sometimes bitter charter politics: the fight to lift the charter cap in New York state in 2006 and 2007. This study examines the dynamics of the relationship through an analysis of media coverage of the New York caps fight and interviews with nearly 30 experts with varied views on charter schooling and from a wide range of professional backgrounds. The New York case suggests that ultimately, creating strong unions and effective charter schooling depends on these two sides finding common ground.


2008 ◽  
pp. 61-76
Author(s):  
A. Porshakov ◽  
A. Ponomarenko

The role of monetary factor in generating inflationary processes in Russia has stimulated various debates in social and scientific circles for a relatively long time. The authors show that identification of the specificity of relationship between money and inflation requires a complex approach based on statistical modeling and involving a wide range of indicators relevant for the price changes in the economy. As a result a model of inflation for Russia implying the decomposition of inflation dynamics into demand-side and supply-side factors is suggested. The main conclusion drawn is that during the recent years the volume of inflationary pressures in the Russian economy has been determined by the deviation of money supply from money demand, rather than by money supply alone. At the same time, monetary factor has a long-run spread over time impact on inflation.


2021 ◽  
Vol 43 (1) ◽  
pp. 1-79
Author(s):  
Colin S. Gordon

Effect systems are lightweight extensions to type systems that can verify a wide range of important properties with modest developer burden. But our general understanding of effect systems is limited primarily to systems where the order of effects is irrelevant. Understanding such systems in terms of a semilattice of effects grounds understanding of the essential issues and provides guidance when designing new effect systems. By contrast, sequential effect systems—where the order of effects is important—lack an established algebraic structure on effects. We present an abstract polymorphic effect system parameterized by an effect quantale—an algebraic structure with well-defined properties that can model the effects of a range of existing sequential effect systems. We define effect quantales, derive useful properties, and show how they cleanly model a variety of known sequential effect systems. We show that for most effect quantales, there is an induced notion of iterating a sequential effect; that for systems we consider the derived iteration agrees with the manually designed iteration operators in prior work; and that this induced notion of iteration is as precise as possible when defined. We also position effect quantales with respect to work on categorical semantics for sequential effect systems, clarifying the distinctions between these systems and our own in the course of giving a thorough survey of these frameworks. Our derived iteration construct should generalize to these semantic structures, addressing limitations of that work. Finally, we consider the relationship between sequential effects and Kleene Algebras, where the latter may be used as instances of the former.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 343
Author(s):  
Veronica Folliero ◽  
Carla Zannella ◽  
Annalisa Chianese ◽  
Debora Stelitano ◽  
Annalisa Ambrosino ◽  
...  

Despite advances in medical knowledge, parasitic diseases remain a significant global health burden and their pharmacological treatment is often hampered by drug toxicity. Therefore, drug delivery systems may provide useful advantages when used in combination with conventional therapeutic compounds. Dendrimers are three-dimensional polymeric structures, characterized by a central core, branches and terminal functional groups. These nanostructures are known for their defined structure, great water solubility, biocompatibility and high encapsulation ability against a wide range of molecules. Furthermore, the high ratio between terminal groups and molecular volume render them a hopeful vector for drug delivery. These nanostructures offer several advantages compared to conventional drugs for the treatment of parasitic infection. Dendrimers deliver drugs to target sites with reduced dosage, solving side effects that occur with accepted marketed drugs. In recent years, extensive progress has been made towards the use of dendrimers for therapeutic, prophylactic and diagnostic purposes for the management of parasitic infections. The present review highlights the potential of several dendrimers in the management of parasitic diseases.


2021 ◽  
pp. 1-8
Author(s):  
Paul Theo Zebhauser ◽  
Achim Berthele ◽  
Marie-Sophie Franz ◽  
Oliver Goldhardt ◽  
Janine Diehl-Schmid ◽  
...  

Background: Tau proteins are established biomarkers of neuroaxonal damage in a wide range of neurodegenerative conditions. Although measurement of total-Tau in the cerebrospinal fluid is widely used in research and clinical settings, the relationship between age and total-Tau in the cerebrospinal fluid is yet to be fully understood. While past studies reported a correlation between age and total-Tau in the cerebrospinal fluid of healthy adults, in clinical practice the same cut-off value is used independently of patient’s age. Objective: To further explore the relationship between age and total-Tau and to disentangle neurodegenerative from drainage-dependent effects. Methods: We analyzed cerebrospinal fluid samples of 76 carefully selected cognitively healthy adults and included amyloid-β 1–40 as a potential marker of drainage from the brain’s interstitial system. Results: We found a significant correlation of total-Tau and age, which was no longer present when correcting total-Tau for amyloid-β 1–40 concentrations. These findings were replicated under varied inclusion criteria. Conclusion: Results call into question the association of age and total-Tau in the cerebrospinal fluid. Furthermore, they suggest diagnostic utility of amyloid-β 1–40 as a possible proxy for drainage-mechanisms into the cerebrospinal fluid when interpreting biomarker concentrations for neurodegenerative diseases.


2020 ◽  
Vol 6 (1) ◽  
pp. 50-56
Author(s):  
Francesco Baino ◽  
Elisa Fiume

AbstractPorosity is known to play a pivotal role in dictating the functional properties of biomedical scaffolds, with special reference to mechanical performance. While compressive strength is relatively easy to be experimentally assessed even for brittle ceramic and glass foams, elastic properties are much more difficult to be reliably estimated. Therefore, describing and, hence, predicting the relationship between porosity and elastic properties based only on the constitutive parameters of the solid material is still a challenge. In this work, we quantitatively compare the predictive capability of a set of different models in describing, over a wide range of porosity, the elastic modulus (7 models), shear modulus (3 models) and Poisson’s ratio (7 models) of bioactive silicate glass-derived scaffolds produced by foam replication. For these types of biomedical materials, the porosity dependence of elastic and shear moduli follows a second-order power-law approximation, whereas the relationship between porosity and Poisson’s ratio is well fitted by a linear equation.


2015 ◽  
Vol 19 (5) ◽  
pp. 488-530
Author(s):  
Cynthia Fowler

This article examines the Religious Art of Today exhibition, originally held in 1944 at Boston’s Institute of Modern Art and then reformulated for the Dayton Art Institute in Ohio. The exhibition was eclectic in that it included a wide range of artists and a diversity of faiths, and engaged the debate held among museum professionals about the relationship between religion and modern art. The article focuses closely on Catholic, Jewish, and Navajo art included in the exhibition. The IMA’s commitment to the figurative tradition afforded artists the opportunity to explore their identities—as Jews, as Catholics, as Navajos—using recognizable religious subjects. That the works in the exhibition were selected as representative of modern art resulted in a convergence of discourses related to modern art with those of religious/cultural identity.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3888
Author(s):  
Boon-Peng Puah ◽  
Juriyati Jalil ◽  
Ali Attiq ◽  
Yusof Kamisah

Lycopene is a well-known compound found commonly in tomatoes which brings wide range of health benefits against cardiovascular diseases and cancers. From an anti-cancer perspective, lycopene is often associated with reduced risk of prostate cancer and people often look for it as a dietary supplement which may help to prevent cancer. Previous scientific evidence exhibited that the anti-cancer activity of lycopene relies on its ability to suppress oncogene expressions and induce proapoptotic pathways. To further explore the real potential of lycopene in cancer prevention, this review discusses the new insights and perspectives on the anti-cancer activities of lycopene which could help to drive new direction for research. The relationship between inflammation and cancer is being highlighted, whereby lycopene suppresses cancer via resolution of inflammation are also discussed herein. The immune system was found to be a part of the anti-cancer system of lycopene as it modulates immune cells to suppress tumor growth and progression. Lycopene, which is under the family of carotenoids, was found to play special role in suppressing lung cancer.


Sign in / Sign up

Export Citation Format

Share Document