scholarly journals Soft Robotic Gripper Based on Multi-Layers of Dielectric Elastomer Actuators

2021 ◽  
Vol 33 (4) ◽  
pp. 968-974
Author(s):  
Witchuda Thongking ◽  
Ardi Wiranata ◽  
Ayato Minaminosono ◽  
Zebing Mao ◽  
Shingo Maeda ◽  
...  

Dielectric elastomer actuators (DEAs) are a promising technology for soft robotics. The use of DEAs has many advantages, including light weight, resilience, and fast response for its applications, such as grippers, artificial muscles, and heel strike generators. Grippers are commonly used as grasping devices. In this study, we focus on DEA applications and propose a technology to expand the applicability of a soft gripper. The advantages of gripper-based DEAs include light weight, fast response, and low cost. We fabricated soft grippers using multiple DEA layers. The grippers successfully held or gripped an object, and we investigated the response time of the grippers and their angle characteristics. We studied the relationship between the number of DEA layers and the performance of our grippers. Our experimental results show that the multi-layered DEAs have the potential to be strong grippers.

Actuators ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 18
Author(s):  
Titus Mulembo ◽  
Waweru Njeri ◽  
Gakuji Nagai ◽  
Hirohisa Tamagawa ◽  
Keishi Naito ◽  
...  

Conventional rigid actuators, such as DC servo motors, face challenges in utilizing them in artificial muscles and soft robotics. Dielectric elastomer actuators (DEAs) overcome all these limitations, as they exhibit complex and fast motions, quietness, lightness, and softness. Recently, there has been much focus on studies of the DEAs material’s non-linearity, the non-linear electromechanical coupling, and viscoelastic behavior of VHB and silicone-based conical DEAs having compliant electrodes that are based on graphite powder and carbon grease. However, the mitigation of overshoot that arises from fast response conical DEAs made with solid electrodes has not received much research focus. In this paper, we fabricated a conical configuration of multi-walled carbon nanotube/polydimethylsiloxane (MWCNT/PDMS) based DEAs with a rise time of 10 ms, and 50% peak overshoot. We developed a full feedback state-based linear-quadratic regulator (LQR) having Luenberger observer to mitigate the DEAs overshoot in both the voltage ON and OFF instances. The cone DEA’s model was identified and a stable and well-fitting transfer function with a fit of 94% was obtained. Optimal parameters Q = 70,000, R = 0.1, and Q = 7000, R = 0.01 resulted in the DEA response having a rise time value of 20 ms with zero overshoot, in both simulations and experiments. The LQR approach can be useful for the control of fast response DEAs and this would expand the potential use of the DEAs as artificial muscles in soft robotics.


Author(s):  
Mills Patel ◽  
Rudrax Khamar ◽  
Akshat Shah ◽  
Tej shah ◽  
Bhavik Soneji

This paper appraisals state-of-the-art dielectric elastomer actuators (DEAs) and their forthcoming standpoints as soft actuators which have freshly been considered as a crucial power generation module for soft robots. DEs behave as yielding capacitors, expanding in area and attenuation in thickness when a voltage is applied. The paper initiates with the explanation of working principle of dielectric elastomer grippers. Here the operation of DEAs include both physics and mechanical properties with its characteristics, we have describe methods for modelling and its introductory application. In inclusion, the artificial muscle based on DEA concept is also formally presented. This paper also elaborates DEAs popular application such as- Soft Robotics, Robotics grippers and artificial muscles.


Actuators ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 73 ◽  
Author(s):  
Mert Corbaci ◽  
Wayne Walter ◽  
Kathleen Lamkin-Kennard

Advancements in software engineering have enabled the robotics industry to transition from the use of giant industrial robots to more friendly humanoid robots. Soft robotics is one of the key elements needed to advance the transition process by providing a safer way for robots to interact with the environment. Electroactive polymers (EAPs) are one of the best candidate materials for the next generation of soft robotic actuators and artificial muscles. Lightweight dielectric elastomer actuators (DEAs) provide optimal properties such as high elasticity, rapid response rates, mechanical robustness and compliance. However, for DEAs to become widely used as artificial muscles or soft actuators, there are current limitations, such as high actuation voltage requirements, control of actuation direction, and scaling, that need to be addressed. The authors’ approach to overcome the drawbacks of conventional DEAs is inspired by the natural skeletal muscles. Instead of fabricating a large DEA device, smaller sub-units can be fabricated and bundled together to form larger actuators, similar to the way myofibrils form myocytes in skeletal muscles. The current study presents a novel fabrication approach, utilizing soft lithography and other microfabrication techniques, to allow fabrication of multilayer stacked DEA structures, composed of hundreds of micro-sized DEA units.


2020 ◽  
Vol 7 ◽  
Author(s):  
M. Franke ◽  
A. Ehrenhofer ◽  
S. Lahiri ◽  
E.-F. M. Henke ◽  
T. Wallmersperger ◽  
...  

Natural motion types found in skeletal and muscular systems of vertebrate animals inspire researchers to transfer this ability into engineered motion, which is highly desired in robotic systems. Dielectric elastomer actuators (DEAs) have shown promising capabilities as artificial muscles for driving such structures, as they are soft, lightweight, and can generate large strokes. For maximum performance, dielectric elastomer membranes need to be sufficiently pre-stretched. This fact is challenging, because it is difficult to integrate pre-stretched membranes into entirely soft systems, since the stored strain energy can significantly deform soft elements. Here, we present a soft robotic structure, possessing a bioinspired skeleton integrated into a soft body element, driven by an antagonistic pair of DEA artificial muscles, that enable the robot bending. In its equilibrium state, the setup maintains optimum isotropic pre-stretch. The robot itself has a length of 60 mm and is based on a flexible silicone body, possessing embedded transverse 3D printed struts. These rigid bone-like elements lead to an anisotropic bending stiffness, which only allows bending in one plane while maintaining the DEA's necessary pre-stretch in the other planes. The bones, therefore, define the degrees of freedom and stabilize the system. The DEAs are manufactured by aerosol deposition of a carbon-silicone-composite ink onto a stretchable membrane that is heat cured. Afterwards, the actuators are bonded to the top and bottom of the silicone body. The robotic structure shows large and defined bimorph bending curvature and operates in static as well as dynamic motion. Our experiments describe the influence of membrane pre-stretch and varied stiffness of the silicone body on the static and dynamic bending displacement, resonance frequencies and blocking forces. We also present an analytical model based on the Classical Laminate Theory for the identification of the main influencing parameters. Due to the simple design and processing, our new concept of a bioinspired DEA based robotic structure, with skeletal and muscular reinforcement, offers a wide range of robotic application.


2020 ◽  
Vol 10 (2) ◽  
pp. 640 ◽  
Author(s):  
Jung-Hwan Youn ◽  
Seung Mo Jeong ◽  
Geonwoo Hwang ◽  
Hyunwoo Kim ◽  
Kyujin Hyeon ◽  
...  

This paper reviews state-of-the-art dielectric elastomer actuators (DEAs) and their future perspectives as soft actuators which have recently been considered as a key power generation component for soft robots. This paper begins with the introduction of the working principle of the dielectric elastomer actuators. Because the operation of DEA includes the physics of both mechanical viscoelastic properties and dielectric characteristics, we describe theoretical modeling methods for the DEA before introducing applications. In addition, the design of artificial muscles based on DEA is also introduced. This paper reviews four popular subjects for the application of DEA: soft robot hand, locomotion robots, wearable devices, and tunable optical components. Other potential applications and challenging issues are described in the conclusion.


2006 ◽  
Vol 45 ◽  
pp. 1828-1833
Author(s):  
Fabio A. Deorsola ◽  
P. Mossino ◽  
Ignazio Amato ◽  
Bruno DeBenedetti ◽  
A. Bonavita ◽  
...  

Nanostructured semiconductor metal oxides have played a central role in the gas sensing research field, because of their high sensitivity, selectivity and low response time. Among all the processes, developed for the synthesis of nanostructured metal oxides, gel combustion seems to be the most promising route due to low-cost precursors and simplicity of the process. It combines chemical gelation and combustion, involving the formation of a gel from an acqueous solution and an exothermic redox reaction, yielding to very porous and softly agglomerated nanopowders. In this work, nanostructured tin oxide, SnO2, and titanium oxide, TiO2, have been synthesized through gel combustion. Powders showed nanometric particle size and high specific surface area. The so-obtained TiO2 and SnO2 nanopowders have been used as sensitive element of resistive λ sensor and ethanol sensor respectively, realized depositing films of nanopowders dispersed in water onto alumina substrates provided with Pt contacts and heater. TiO2-based sensors showed at high temperature good response, fast response time, linearity in a wide range of O2 concentration and long-term stability. SnO2-based sensors have shown high sensitivity to low concentrations of ethanol at moderate temperature.


2009 ◽  
Vol 3 (3) ◽  
Author(s):  
Jean-Sébastien Plante ◽  
Kenjiro Tadakuma ◽  
Lauren M. DeVita ◽  
Daniel F. Kacher ◽  
Joseph R. Roebuck ◽  
...  

A parallel manipulator concept using bistable polymer actuators has been developed to perform prostate cancer biopsy, and deliver therapy within the bore of a magnetic resonance imaging (MRI) scanner. The dielectric elastomer actuators (DEAs) used in this manipulator concept are promising for MRI-compatible robotics because they do not interfere with the high magnetic fields of MRI while having good mechanical performance and being low cost. In the past, these actuators have been plagued by robustness problems when used in a continuous manner. Recent studies show that reliability significantly improves when DEAs are used in a bistable manner, as proposed here. This paper investigates the potential of the proposed manipulator concept by evaluating the positioning accuracy and MRI compatibility of a laboratory prototype, developed for clinically relevant design criteria. An analytical model of the manipulator kinematics is presented. Analytical and experimental results validate that the proposed technology can provide an accurate needle placement required to perform prostate cancer treatments. The prototype’s MRI compatibility is validated in a 3 T clinical MRI scanner. The parallel manipulator concept using bistable polymer actuators is shown to be a viable approach to perform MRI-guided needle insertions for prostate cancer biopsy and therapy.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4310
Author(s):  
Keita Shimizu ◽  
Toshiaki Nagai ◽  
Jun Shintake

Dielectric elastomer actuators (DEAs) are one of the promising actuation technologies for soft robotics. This study proposes a fiber-shaped DEA, namely dielectric elastomer fiber actuators (DEFAs). The actuator consisted of a silicone tube filled with the aqueous electrode (sodium chloride solution). Furthermore, it could generate linear and bending actuation in a water environment, which acts as the ground side electrode. Linear-type DEFA and bending-type DEFA were fabricated and characterized to prove the concept. A mixture of Ecoflex 00–30 (Smooth-On) and Sylgard 184 (Dow Corning) was employed in these actuators for the tube part, which was 75.0-mm long with outer and inner diameters of 6.0 mm and 5.0 mm, respectively. An analytical model was constructed to design and predict the behavior of the devices. In the experiments, the linear-type DEFA exhibited an actuation strain and force of 1.3% and 42.4 mN, respectively, at 10 kV (~20 V/µm) with a response time of 0.2 s. The bending-type DEFA exhibited an actuation angle of 8.1° at 10 kV (~20 V/µm). Subsequently, a jellyfish-type robot was developed and tested, which showed the swimming speed of 3.1 mm/s at 10 kV and the driving frequency of 4 Hz. The results obtained in this study show the successful implementation of the actuator concept and demonstrate its applicability for soft robotics.


2019 ◽  
Vol 6 (8) ◽  
pp. 182145 ◽  
Author(s):  
Yang Gao ◽  
Xiaoliang Fang ◽  
Danhquang Tran ◽  
Kuan Ju ◽  
Bo Qian ◽  
...  

Dielectric elastomer actuator (DEA) based on dielectric elastomer holds promising applications in soft robotics. Compliant electrodes with large stretchability and high electrical conductivity are the vital components for the DEAs. In this study, a type of DEA was developed using carbon nanotube/polyvinyl alcohol (CNT/PVA) hydrogel electrodes. The CNT/PVA hydrogel electrodes demonstrate a stretchability up to 200% with a small relative resistance change of approximately 1.2, and a self-healing capability. The areal strain of the DEA based on the CNT/PVA hydrogel electrodes is more than 40%, much higher than the ones based on pure PVA electrodes.


Sign in / Sign up

Export Citation Format

Share Document