scholarly journals Phytoremediation of Heavy Metal Industrial contaminated soil by Spiracia oleracea L and Zeamays L

Author(s):  
Abhilash M.R ◽  
Srikantaswamy S ◽  
Shiva Kumar D ◽  
Jagadish K ◽  
Shruthi L

<em>Present days, environment is filled up with a large quantity of toxicants including heavy metals in dissimilar forms. Heavy metal pollution is a significant environmental problem and has its negative impact on human health and agriculture. Several methods already used to clean up the environment from these kinds of contaminants, but most of them are costly and difficult to get optimum results. Currently, phytoremediation is an effective and affordable technological solution used to extract or remove inactive metals and metal pollutants from contaminated soil and water. This technology is environmental friendly and potentially cost effective. This article reports about the mobility, bio-availability and Phytoremediational response of plant in heavy metals in Industrial contaminated soil<strong> </strong>of Mysuru City, additionally Translocation factor (TF) and Biological Concentration Factor (BCF) also carried to know the ability of the Spiracia oleracea L and Zeamays L.</em>

2011 ◽  
Vol 2011 ◽  
pp. 1-31 ◽  
Author(s):  
Bieby Voijant Tangahu ◽  
Siti Rozaimah Sheikh Abdullah ◽  
Hassan Basri ◽  
Mushrifah Idris ◽  
Nurina Anuar ◽  
...  

Heavy metals are among the most important sorts of contaminant in the environment. Several methods already used to clean up the environment from these kinds of contaminants, but most of them are costly and difficult to get optimum results. Currently, phytoremediation is an effective and affordable technological solution used to extract or remove inactive metals and metal pollutants from contaminated soil and water. This technology is environmental friendly and potentially cost effective. This paper aims to compile some information about heavy metals of arsenic, lead, and mercury (As, Pb, and Hg) sources, effects and their treatment. It also reviews deeply about phytoremediation technology, including the heavy metal uptake mechanisms and several research studies associated about the topics. Additionally, it describes several sources and the effects of As, Pb, and Hg on the environment, the advantages of this kind of technology for reducing them, and also heavy metal uptake mechanisms in phytoremediation technology as well as the factors affecting the uptake mechanisms. Some recommended plants which are commonly used in phytoremediation and their capability to reduce the contaminant are also reported.


Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1057
Author(s):  
Ehab Azab ◽  
Ahmad K. Hegazy

Heavy metal-contaminated soil constitutes many environmental concerns. The toxic nature of heavy metals poses serious threats to human health and the ecosystem. Decontamination of the polluted soil by phytoremediation is of fundamental importance. Vegetation is an appealing and cost-effective green technology for the large-scale phytoremediation of polluted soils. In this paper, a greenhouse experiment was carried out to test the potential of Rhazya stricta as a heavy metal phytoremediator in polluted soil. Plants were grown for three months in pots filled with soils treated with the heavy metals Cd, Pb, Cu, and Zn at rates of 10, 50, and 100 mg/kg. The bioaccumulation factor (BCF) and translocation factor (TF) were calculated to detect the ability of R. stricta to accumulate and transfer heavy metals from soil to plant organs. The results showed that under increasing levels of soil pollution, the bioconcentration of Cd and Zn heavy metals showed the highest values in plant roots followed by leaves, whereas in the case of Pb and Cu, roots showed the highest values followed by stems. Heavy metals accumulation was higher in roots than in stems and leaves. The BCF of Zn reached the highest values in roots and stems for 10 mg/kg soil treatment, followed by the BCFs of Cd, Cu, and Pb. The TF for the different heavy metal pollutants’ concentrations was less than unity, suggesting that the plants remediate pollutants by phytostabilization. The TF values ranged from higher to lower were in the order Zn > Cu > Cd > Pb. The rapid growth of R. stricta and its tolerance of heavy metals, as well as its ability to absorb and accumulate metals within the plant, recommends its use in the phytoremediation of slightly polluted soils in arid lands by limiting the heavy metals transport.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1138
Author(s):  
Ibrahim Alkali Allamin ◽  
Nur Adeela Yasid ◽  
Siti Rozaimah Sheikh Abdullah ◽  
Mohd Izuan Effendi Halmi ◽  
Mohd Yunus Shukor

A pot experiment was conducted to measure the phyto-tolerance and accumulation of heavy metals in petroleum oily sludge POS by Cajanus cajan (pigeon pea) on soils treated with five different concentrations (1%, 2%, 3%, 4%, and 5% w/w) of the POS. The response of the plant to oily sludge varied significantly from the untreated control and among the various treatments. The growth of C. cajan was slightly (but not significantly) influenced by the oily sludge in soil; growth of C. cajan at relatively lower concentrations of POS (1 to 3%) was greater than in the treatments with relatively higher concentrations POS (4 to 5%). A significant interaction was observed in the relative growth rates (RGRs) of C. cajan, which significantly increased in the treatments with relatively low POS (1 to 3%) and decrease significantly at higher POS concentrations. The heavy metal content of the plant roots as the POS concentrations were increase show that the concentration of all heavy metals in the roots increased accordingly. Cu showed the highest accumulation with an increase from 1.9 to 6.8 mg/kg followed by Pb, Zn, Ni, Mn, and Cr, which was the least-accumulated. Heavy metal analysis in C. cajan tissues indicated a considerable accumulation of the metals Pb, Zn, Ni, Mn, Cu, and Cr in the root and stem of the plant, with negligible metal concentrations detected in the plant leaves, suggesting a low translocation factor but indicating that C. cajan is resistant to heavy metals. As the search for more eco-friendly and sustainable remediating green plant continues, C. cajan shows great potential for reclaiming POS-contaminated soil due to the above properties including resistance to toxic heavy metals from oily sludge. These findings will provide solutions to polluted soils and their subsequent re-vegetation.


2021 ◽  
Vol 6 (3) ◽  
pp. 137
Author(s):  
Anna Rejeki Simbolon ◽  
Triyoni Purbonegoro

<strong>Bioaccumulation of Mercury (Hg) in Seagrass <em>Enhalus acoroides</em> and Mangrove <em>Rhizophora apiculata</em> in Pari Island, Seribu Islands.  </strong>Heavy metal pollution, especially Hg metal in Jakarta Bay, is feared to have a negative impact on the quality of the waters around the Jakarta Bay waters, one of which is Pari Island in the Thousand Islands. Seagrass and mangroves plants distributed surrounding Pari Island can be used as indicators of heavy metal pollution. The value of bioaccumulation and translocation of Hg metal factors will provide an overview of the ability of plants to accumulate heavy metals in their surroundings. This study aims to determine the bioaccumulation and translocation of the heavy metal Hg factor in <em>Enhalus acoroides</em> seagrass and <em>Rhizophora apiculata</em> mangroves on Pari Island, Seribu Islands. Seagrass and mangrove samples were taken at five sampling points through purposive sampling. The bioaccumulation value was calculated using the ratio of the metal concentrations in each part of the plant body and sediment. Meanwhile, the translocation factor value was calculated by the ratio of Hg concentration in each part of the plant body (roots/rhizomes, stems, and leaves). The results of this study indicate that the bioaccumulation value in seagrass is infinite (bioaccumulation factor, BAF=∞) and in mangroves is 1.57 (BAF&gt;1). The highest <em>translocation factor</em> value in seagrass leaves is 3.86 (translocation factor, TF) &gt;1) and in mangrove leaves is 2.84 (TF&gt;1). This study shows that seagrass and mangrove plants are classified as good bio accumulator and hyperaccumulator plants and accumulate heavy metals, especially Hg in the upper part of their bodies, namely leaves


2015 ◽  
Vol 41 (4) ◽  
pp. 104-114 ◽  
Author(s):  
Anna Małachowska Jutsz ◽  
Anna Gnida

AbstractHeavy metal pollution of soil is a significant environmental problem and has a negative impact on human health and agriculture. Phytoremediation can be an alternative environmental treatment technology, using the natural ability of plants to take up and accumulate pollutants or transform them. Proper development of plants in contaminated areas (e.g. heavy metals) requires them to generate the appropriate protective mechanisms against the toxic effects of these pollutants. This paper presents an overview of the physiological mechanisms of stress avoidance and tolerance by plants used in phytoremediation of heavy metals.


2020 ◽  
Vol 16 ◽  
Author(s):  
Muhammad Shahid Nazir ◽  
Bushra Anees Palvasha ◽  
Zaman Tahir ◽  
Sadaf ul Hassan ◽  
Zulfiqar Ali ◽  
...  

Background: Water contamination by noxious heavy metals due to urbanization is a global environmental problem. Heavy metal ions pollution make the water unsuitable for drinking and are also highly toxic to human beings and eco-system. Remediation of heavy metals is therefore very crucial. Method: Adsorbents based on biopolymer and eco-friendly polymer composites have been developed and fabricated to remediate and remove heavy metals from the ecosystem. Result: In recent years, biocomposites have been successful as cost effective adsorbents for the remediation of various contaminants with their eco-friendly nature and sustainability. Conclusion: This review article gives an overview on the remediation of heavy metals using green biocomposites.


2021 ◽  
Vol 261 ◽  
pp. 04006
Author(s):  
Mengxuan Han ◽  
Huan Yang ◽  
Na Ding ◽  
Shaohong You ◽  
Guo Yu

Soil heavy metal pollution is an important environmental problem threatening people’s health and sustainable economic development. Phytoremediation has become an important technology for the treatment of heavy metal contaminated soil with the characteristics of economy and environmental protection. This paper mainly analyzed the role of microbial community in heavy metal contaminated soil remediation process. Bacterias mainly strengthen the remediation effect of plants on heavy metal contaminated soil in two ways: first, bacterias have adsorption effect on heavy metals and reduce the toxicity of heavy metals to plants in soil; Two is to secrete organic acids and nutrients needed for plant growth to promote the absorption of heavy metals by hyperaccumulators.


2020 ◽  
Vol 9 (1) ◽  
pp. 736-750
Author(s):  
Xilu Chen ◽  
Xiaomin Li ◽  
Dandan Xu ◽  
Weichun Yang ◽  
Shaoyuan Bai

AbstractChromium (Cr) is a common toxic heavy metal that is widely used in all kinds of industries, causing a series of environmental problems. Nanoscale zero- valent iron (nZVI) is considered to be an ideal remediation material for contaminated soil, especially for heavy metal pollutants. As a material of low toxicity and good activity, nZVI has been widely applied in the in situ remediation of soil hexavalent chromium (Cr(vi)) with mobility and toxicity in recent years. In this paper, some current technologies for the preparation of nZVI are summarized and the remediation mechanism of Cr(vi)-contaminated soil is proposed. Five classified modified nZVI materials are introduced and their remediation processes in Cr(vi)-contaminated soil are summarized. Key factors affecting the remediation of Cr(vi)-contaminated soil by nZVI are studied. Interaction mechanisms between nZVI-based materials and Cr(vi) are explored. This study provides a comprehensive review of the nZVI materials for the remediation of Cr(vi)-contaminated soil, which is conducive to reducing soil pollution.


2019 ◽  
Vol 42 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Sadia Qayyum ◽  
Ke Meng ◽  
Sidra Pervez ◽  
Faiza Nawaz ◽  
Changsheng Peng

Abstract Soil contamination with heavy metal content is a growing concern throughout the world as a result of industrial, mining, agricultural and domestic activities. Fungi are the most common and efficient group of heavy metal resistant microbe family which have potential for metal bioleaching. The use of filamentous fungi in bioleaching of heavy metals from contaminated soil has been developed recently. The current study intends to isolate a strain with the ability to degrade the pH value of the liquid medium. Identification results based on morphological and molecular biological analysis gave a 98% match to Aspergillus flavus. Batch experiments were conducted to select the optimal conditions for bioleaching process which indicated that 130 mg/ L sucrose, neutral pH and temperature of 30°C were more suitable during 15-day bioleaching experiments using A. flavus. In one-step bioleaching, the bioleaching efficiencies were 18.16% for Pb, 39.77% for Cd and 58.22% for Zn+2, while two-step bioleaching showed efficiencies of 16.91% for Pb, 49.66% for Cd and 65.73% for Zn+2. Overall, this study indicates that bioleaching of heavy metals in contaminated soil using A. flavus has the potential for contaminated soil remediation.


2014 ◽  
Vol 4 (1) ◽  
pp. 193 ◽  
Author(s):  
Gideon Ramtahal ◽  
Ivan Chang Yen ◽  
Isaac Bekele ◽  
Frances Bekele ◽  
Lawrence Wilson ◽  
...  

<p>The determination of heavy metals in cocoa beans and chocolates is of great importance, due to increasingly stringent regulations being implemented by international legislative bodies and chocolate manufacturers, to protect the health of their consumers. While various techniques exist for heavy metal analyses in cocoa, this study developed a cost-effective, accurate and precise method capable of processing up to 120 samples per batch for the determination of cadmium, copper, nickel and zinc. For sample extractions, a normal laboratory hot plate and locally fabricated high-capacity digestion blocks were used, instead of dedicated block digestion or microwave digestion systems. In addition, only concentrated nitric acid was used, instead of mixed reagents used in standardized methods, for metal extractions from samples, with a sample: extractant ratio of 0.5 g : 10 mL, digestion at 130 ºC, followed by filtration and analysis by flame atomic absorption spectrophotometry. The method was validated with Certified Reference Materials, with heavy metal recoveries generally &gt;95%. Additionally, an in-house quality control sample of ground cocoa nib analyzed together with the Certified Reference Materials was used to monitor the consistency of analyses of heavy metals in cocoa bean samples.</p>


Sign in / Sign up

Export Citation Format

Share Document