scholarly journals Oxy Acetylene Welding Analysis for Plastic Welding of Thermoplastic Polymer Materials

2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Ayeik Abimanyu ◽  
Prantasi Harmi Tjahjanti

Plastic welding technique is a technique of gluing to workpieces, especially plastic materials. The aim of this research was to join the thermoplastic polymer material using an acetylene oxy welding. The connection method is by melting the electrodes on the workpiece so that the electrodes can fuse to the parent material. The materials used are Polyethylene (PE), Polyvinyl chloride (PVC) and Polypropylene (PP) plastic sheets with the appropriate electrodes from their respective parents. After going through the welding process, the weld results are tested using a dye penetrant. The best results from the dye penetrant are then tested for hardness

2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Adi Prastyo Utomo ◽  
Prantasi Harmi Tjahjanti

There is not much plastic welding currently done and not much research has been done on plastic welding. The purpose of this study was to study the use of welding variations used to join the thermoset polymer material. The thermoset polymer materials used are acrylic, melamine and bakelit with the test sample measuring 80mm in length, 30mm in width and 3mm in thickness. Variations in welding are used using hot gas welding, electric soldering and gas torches. The test method is carried out after welding to determine the porosity of the weld using a penetrant liquid. Hardness testing was also carried out. The best welding results are shown on acrylic material using electric solder, showing that the amount of porosity is the least, and has the highest hardness test.


Author(s):  
J. Petermann ◽  
G. Broza ◽  
U. Rieck ◽  
A. Jaballah ◽  
A. Kawaguchi

Oriented overgrowth of polymer materials onto ionic crystals is well known and recently it was demonstrated that this epitaxial crystallisation can also occur in polymer/polymer systems, under certain conditions. The morphologies and the resulting physical properties of such systems will be presented, especially the influence of epitaxial interfaces on the adhesion of polymer laminates and the mechanical properties of epitaxially crystallized sandwiched layers.Materials used were polyethylene, PE, Lupolen 6021 DX (HDPE) and 1810 D (LDPE) from BASF AG; polypropylene, PP, (PPN) provided by Höchst AG and polybutene-1, PB-1, Vestolen BT from Chemische Werke Hüls. Thin oriented films were prepared according to the method of Petermann and Gohil, by winding up two different polymer films from two separately heated glass-plates simultaneously with the help of a motor driven cylinder. One double layer was used for TEM investigations, while about 1000 sandwiched layers were taken for mechanical tests.


2019 ◽  
Vol 3 (2) ◽  
pp. 111-118
Author(s):  
Bahtiar Wilantara ◽  
Raharjo Raharjo

This study aims to develop an analog compression tester measuring instrument into a digital compression tester as a measurement tool that can provide effectiveness and efficiency to users.                     This research is a research and development or R&D. This research was conducted in several steps, namely: problem identification, information gathering, product design, product manufacture, expert validation, product revision, testing, final production. The development of analog compression tester was first validated by material experts, media experts, and 15 students, and 5 students for field trials. The subjects of this study were vocational students at Taman Karya Madya Teknik Kebumen. Data collection techniques used in this study using instruments in the form of a questionnaire. The data analysis technique of this research is descriptive qualitative and quantitative descriptive percentage.                 The results of the development of digital compression tester designs are: 1) the tools and materials used are electric drill, grinding, cutter, goggles, gloves, masks, ruler, acetaminine welding, screwdriver, scissors, digital dial pressure gauge, hose, spark plugs, clamps , and nepel, 2) the manufacturing process that starts from the cutting process, the hole drilling process, the welding process and the process of connecting between components, 3) the workings of digital compression tester design that is reading the pressure or compression of the machine displayed on the monitor digitally using dial pressure digital gauge, 4) the test results obtained from the validation results from: a) material experts at 89% or Eligible; b) media experts at 85% or reasonable; c) response of field trial students in terms of ease of use and reading of 90% or feasible. Thus, the conclusion that the digital compression tester measuring instrument declared feasible to use for measurement.


2011 ◽  
Vol 189-193 ◽  
pp. 4356-4360 ◽  
Author(s):  
E.G. Domek

The work treats about problem of designing of gear with timing belt depending on expected character of exploitation. The work presents constructional features of transmission timing belts depending on materials used for their production. Design of composites and usage of new polymer materials allows for improvement of constructional properties of belts.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
J. S. Dhaliwal ◽  
M. S. Negi ◽  
G. S. Kapur ◽  
Shashi Kant

This paper reports the compatibility studies of 10% ethanol blended gasoline (E10) with four types of elastomer materials, namely, Neoprene rubber, Nitrile rubber, hydrogenated Nitrile butadiene rubber (HNBR), and Polyvinyl chloride/Nitrile butadiene rubber blend (PVC/NBR), and two types of plastic materials, namely, Nylon-66 and Polyoxymethylene (Delrin). These materials have applications in automotives as engine seals, gaskets, fuel system seals and hoses, and so forth. Two types of the ethanol blended gasoline mixtures were used: (a) gasoline containing 5% ethanol (E5), which is commercial form of gasoline available in India, and (b) gasoline containing 10% ethanol (E10). The above materials were immersed in E5 and E10 for 500 hrs at 55°C. A set of eight different properties in E5 and E10 (visual inspection, weight change, volume change, tensile strength, percent elongation, flexural strength, impact strength, and hardness) were measured after completion of 500 hrs and compared with reference specimens (specimens at 55°C without fuel and specimens at ambient conditions). Variation observed in different materials with respect to the above eight properties has been used to draw inference about the compatibility of these elastomeric/polymer materials with E10 fuel vis-à-vis E5 fuels. The data presented in this study is comparative in nature between the results of E10 and E5.


2021 ◽  
Vol 887 ◽  
pp. 85-90
Author(s):  
L.S. Elbakyan ◽  
I.V. Zaporotskova ◽  
D.E. Vilkeeva

The main aims and the objectives of the study focused on solving current problems of nanomaterial science of new materials – creating the scientific basis for competitive methods of obtaining and controlling new composite materials having improved strength properties based on carbon-containing polymer matrices with nanotubes stabilized in them. A technology for obtaining experimental samples of nanocompositional polymer material based on polymethylmethacrylate, polybutylmethacrylate, and methacrylic acid doped with carbon nanotubes has been developed, using ultrasonic action and mechanical mixing of the composite mixture to achieve the most uniform distribution of nanotubes in the matrix. To determine the possibility of implementing the mechanism of adsorption interaction of the studied polymer material with the surface of carbon nanotubes, DFT calculations of the interaction of the polymer material component and single-layer carbon nanotubes of various types have been done.


2020 ◽  
Vol 40 (1) ◽  
pp. 67-74
Author(s):  
Manigandan Krishnan ◽  
Senthilkumar Subramaniam

The force generation, joint mechanical and metallurgical properties of friction stir corner welded non-heat treatable AA 5086 aluminum alloy are investigated in this paper. The friction stir welding process is carried out with the plate thicknesses of 6 mm and 4 mm. The welding speed, tool rotational speed and tool plunge depth were considered as the process parameters to conduct the welding experiments. The machine spindle motor current consumption and tool down force generation during friction stir welding were analyzed. The microstructures of various joint regions were observed. The tensile samples revealed the tensile strength of 197 MPa with tool rotational and welding speeds of 1,000 rev/min and 150 mm/min respectively, which is 78 % of parent material tensile strength. A maximum micro hardness of 98 HV was observed at thermomechanically joint affected zone, which was welded with tool rotation of 1,000 rev/min and welding speed of 190 mm/min.


2021 ◽  
Vol 50 (9) ◽  
pp. 2743-2754
Author(s):  
Ashish Jacob ◽  
Sachin Maheshwari ◽  
Arshad Noor Siddiquee ◽  
Abdulrahman Al-Ahmari ◽  
Mustufa Haider Abidi ◽  
...  

Certain age hardenable alloys such as AA7475 cannot be joined with perfection using fusion welding techniques. This requires non-conventional welding technique such as friction stir welding process to join these ‘difficult to weld’ alloys. In this study, three different cooling conditions i.e. cryogenic, sub-zero, and zero-degree Celsius temperature conditions have been analyzed to understand its impact on the welding process. In-process cooling was found to behave effectively and also enhanced the mechanical properties of the welded joints. A stable microstructure was clearly seen in the images observed under the metallurgical microscope. The weld efficiencies were found to be good in each of the samples which are indicative of a strong metallic joint. The effective cooling conditions employed had an overall positive impact on the joint.


Sign in / Sign up

Export Citation Format

Share Document