COMPARATIVE TAPHONOMY OF DEEP-SEA AND SHALLOW-MARINE ECHINOIDS OF THE GENUS ECHINOCYAMUS

Palaios ◽  
2020 ◽  
Vol 35 (10) ◽  
pp. 403-420
Author(s):  
TOBIAS B. GRUN ◽  
MORANA MIHALJEVIĆ ◽  
GREGORY E. WEBB

ABSTRACT The infaunal living clypeasteroid echinoid genus Echinocyamus is considered a model organism for various ecological and paleontological studies since its distribution ranges from the polar regions to the tropics, and from shallow-marine settings to the deep-sea. Deep-sea analyses of this genus are rare, but imperative for the understanding and function of these important ecosystems. During the 2012 Southern Surveyor expedition, 35 seamounts off the east coast of Australia were dredged in depths greater than 800 m. Of these, six dredges contained a total of 18 deep-sea Echinocyamus tests. The tests have been analyzed for taphonomic alterations including abrasion patterns, macro-borings, micro-borings, depressions on the test, test staining, test filling, encrustation, and fragmentation. Findings are interpreted in the context of the deep-sea setting and are compared to Echinocyamus samples from shallow-water environments. Results show that abrasion in deep-sea environments is generally high, especially in ambulacral and genital pores indicating that tests can persist for a long time on the seafloor. This contrasts with shallow-water Echinocyamus that show lower abrasion due to early test destruction. Macro-borings are present as single or paired holes with straight vertical profiles resembling Lithophaga borings. Micro-borings are abundant and most likely the result of sponge or fungal activity. Depressions on the tests, such as scars or pits, are likely the result of trauma or malformation during ontogeny. Test staining is common, but variable, and is associated with FE/Mn oxidation and authigenic clays based on elemental analyses. Test filling occurs as loose or lithified sediment. Encrustation is present in the form of rudimentary crusts and biofilms. No macro-organisms were found on the tests. Biofilm composition differs from shallow-water environments in that organisms captured in the biofilm reflect aphotic conditions or sedimentation of particles from higher in the water column (e.g., coccoliths). Fragmentation is restricted to the apical system and pore regions. Results of this first comparative study on deep-sea Echinocyamus from Australian seamounts show that the minute tests can survive for a long time in these settings and undergo environmental specific taphonomic processes reflected in various taphonomic alterations.

1950 ◽  
Vol 87 (3) ◽  
pp. 175-180 ◽  
Author(s):  
M. H. Khan

AbstractForaminiferal evidence in the past has been held to suggest that the Gault is a deep sea deposit—a view which conflicts with the belief held by many on geological and other palaeontological grounds that the Gault was laid down in fairly shallow water. This contradiction is due to a misinterpretation of the foraminiferal evidence which, in the opinion of the writer, favours a temperate, relatively shallow marine environment for the deposition of the Gault, at least in South-East of England.


2021 ◽  
Vol 168 (3-4) ◽  
Author(s):  
Marianna V. P. Simões ◽  
Hanieh Saeedi ◽  
Marlon E. Cobos ◽  
Angelika Brandt

Abstract Empirical and theoretical studies suggest that marine species respond to ocean warming by shifting ranges poleward and/or into deeper depths. However, future distributional patterns of deep-sea organisms, which comprise the largest ecosystem of Earth, remain poorly known. We explore potential horizontal range shifts of benthic shallow-water and deep-sea Crustacea due to climatic changes within the remainder of the century, and discuss the results in light of species-specific traits related to invasiveness. Using a maximum entropy approach, we estimated the direction and magnitude of distributional shifts for 94 species belonging to 12 orders of benthic marine crustaceans, projected to the years 2050 and 2100. Distance, direction, and species richness shifts between climate zones were estimated conservatively, by considering only areas suitable, non-extrapolative, and adjacent to the currently known distributions. Our hypothesis is that species will present poleward range-shifts, based on results of previous studies. Results reveal idiosyncratic and species-specific responses, with prevailing poleward shifts and a decline of species richness at mid-latitudes, while more frequent shifts between temperate to polar regions were recovered. Shallow-water species are expected to shift longer distances than deep-sea species. Net gain of suitability is slightly higher than the net loss for shallow-water species, while for deep-sea species, the net loss is higher than the gain in all scenarios. Our estimates can be viewed as a set of hypotheses for future analytical and empirical studies, and will be useful in planning and executing strategic interventions and developing conservation strategies.


Acarina ◽  
2021 ◽  
Vol 29 (2) ◽  
pp. 189-232
Author(s):  
Ilse Bartsch

Presently, 39 Lohmannella species are accepted as valid, but future examinations may prove some of them to be junior synonyms of others. This article lists the most important descriptive papers, as well as the former names for each of the 39 species. The characters of another five species, known by their adults, are outlined but not given a name. Based on the published data, short diagnoses as well as notes on the distribution and habitats are added. In addition, the poorly known female of Lohmannella bihamata is described and illustrated. This article provides a table of morphological characters that are meant to facilitate the identification of Lohmannella species. The genus Lohmannella is spread worldwide, inhabiting all water depths and all climatic zones; its representatives live in marine and fresh water. Although the majority of Lohmannella species have been found at sea, five species have been recovered from fresh or slightly brackish water. In the following sentences, the number of unnamed species is given in square brackets. Records of 33 [plus two] marine species are exclusively from the littoral and/or bathyal zone (0–1,000 m deep); records of three [plus three] species are from the deep sea (deeper than 1,000 m); and one record is from the littoral / deep sea depth range. Most species have been found in the temperate and polar areas: namely, 12 [plus two] have been recorded north of 23°N and 20 south of 23°S. The data from the tropics include a single shallow water (0–200 m deep) record, one unnamed species from the 400–520 m depth and one [plus two] species from the depth of more than 1,000 m. Most southern hemisphere shallow water species are morphologically distinct from the bathyal and abyssal species, as well as from the northern hemisphere species.


Archaea ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Franziska Wemheuer ◽  
Avril Jean Elisabeth von Hoyningen-Huene ◽  
Marion Pohlner ◽  
Julius Degenhardt ◽  
Bert Engelen ◽  
...  

Information on environmental conditions shaping archaeal communities thriving at the seafloor of the central Pacific Ocean is limited. The present study was conducted to investigate the diversity, composition, and function of both entire and potentially active archaeal communities within Pacific deep-sea sediments. For this purpose, sediment samples were taken along the 180° meridian of the central Pacific Ocean. Community composition and diversity were assessed by Illumina tag sequencing targeting archaeal 16S rRNA genes and transcripts. Archaeal communities were dominated by CandidatusNitrosopumilus(Thaumarchaeota) and other members of theNitrosopumilaceae(Thaumarchaeota), but higher relative abundances of the Marine Group II (Euryarchaeota) were observed in the active compared to the entire archaeal community. The composition of the entire and the active archaeal communities was strongly linked to primary production (chlorophyll content), explaining more than 40% of the variance. Furthermore, we found a strong correlation of the entire archaeal community composition to latitude and silicic acid content, while the active community was significantly correlated with primary production and ferric oxide content. We predicted functional profiles from 16S rRNA data to assess archaeal community functions. Latitude was significantly correlated with functional profiles of the entire community, whereas those of the active community were significantly correlated with nitrate and chlorophyll content. The results of the present study provide first insights into benthic archaeal communities in the Pacific Ocean and environmental conditions shaping their diversity, distribution, and function. Additionally, they might serve as a template for further studies investigating archaea colonizing deep-sea sediments.


2017 ◽  
Vol 25 (4) ◽  
pp. 481-491 ◽  
Author(s):  
Klaudia Kosek ◽  
Katarzyna Jankowska ◽  
Żaneta Polkowska

Microbes are omnipresent and diverse members of all biological communities. In marine and freshwater ecosystems, microorganisms form the base of the food chain supporting higher trophic levels. Even though microbes are generally thought to live in warm regions of Earth, many of them develop in cold climates. Polar regions remain relatively protected from widespread anthropogenic disturbances, which is a consequence of thier remoteness and extreme climate conditions. For a long time these regions were considered to be free from chemical contamination until scientists discovered a presence of pollutants there. Chemical contamination may induce serious disorders in the integrity of polar ecosystems influencing the growth of bacterial communities. Xenobiotics including persistent organic pollutants are transported thousands of kilometers by the air and ocean currents, and they are deposed in high-latitude regions and accumulate in all elements of the environment including bacterial communities. It is important to determine their concentration levels in bacterial cells to assess the possibility of contaminants becoming transferred to higher trophic levels; however, some species of bacteria are capable of metabolizing xenobiotics, which makes them less toxic or even removes them from the environment.


Author(s):  
Michel Praet-Van

This ultrastructural investigation of gametogenesis in a deep-sea anemone of the Bay of Biscay trawled around 2000 m depth, contributes to the knowledge of biology and strategy of reproduction of deep-sea benthos.This sea anemone is dioecious. The sperm appears very similar to those of shallow water sea anemones of the genus, Calliactis. The ultrastructural investigation of oogenesis allows the characteristics of the stages of previtellogenesis and vitellogenesis to be defined. The latter begins with a period of lipogenesis correlated with the formation of a trophonema. Mature oocytes measure up to 180 (im in diameter. Study of spermatogenesis and oogenesis reveals that spawning occurs in April/May. In males, the main area of testicular cysts, full of sperm, reaches maximal development from March to May and, in females, the percentage of mature oocytes decreases from 33% in April to 1% in May.Spawning may be induced by the advent in the deep-sea of the products of the spring phytoplankton bloom. This period of spawning, during the increased deposition of organic matter to the deep-sea floor, may be an advantageous strategy for early development of Paracalliactis.


2009 ◽  
Vol 2009 ◽  
pp. 1-15 ◽  
Author(s):  
Akiko Kyuno ◽  
Mifue Shintaku ◽  
Yuko Fujita ◽  
Hiroto Matsumoto ◽  
Motoo Utsumi ◽  
...  

We sequenced the mitochondrial ND4 gene to elucidate the evolutionary processes ofBathymodiolusmussels and mytilid relatives. Mussels of the subfamily Bathymodiolinae from vents and seeps belonged to 3 groups and mytilid relatives from sunken wood and whale carcasses assumed the outgroup positions to bathymodioline mussels. Shallow water mytilid mussels were positioned more distantly relative to the vent/seep mussels, indicating an evolutionary transition from shallow to deep sea via sunken wood and whale carcasses.Bathymodiolus platifronsis distributed in the seeps and vents, which are approximately 1500 km away. There was no significant genetic differentiation between the populations. There existed high gene flow betweenB. septemdierumandB. breviorand low but not negligible gene flow betweenB. marisindicusandB. septemdierumorB. brevior, although their habitats are 5000–10 000 km away. These indicate a high adaptability to the abyssal environments and a high dispersal ability ofBathymodiolusmussels.


1983 ◽  
Vol 96 (2) ◽  
pp. 527-540 ◽  
Author(s):  
J Molè-Bajer ◽  
A S Bajer

We have studied the effect of taxol on mitosis in Haemanthus endosperm. Immuno-Gold Stain (IGS), a new immunocytochemical method (17), was used to visualize microtubules (MTs) in the light microscope. Observations on MT arrangements were correlated with studies in vivo. Chromosome movements are affected in all stages of mitosis which progresses over at least 10(4) range of taxol concentrations. The three most characteristic effects on MTs are: (a) enhancement of the lateral associations between MTs, seen especially during the reorganization of the polar region of the spindle, (b) promotion of MT assembly, leading to the formation of additional MTs in the spindle and MT arrays in the cytoplasm, and (c) an increase in MT stability, demonstrated in their increased cold resistance. In this report, the emphasis is on the primary, immediate effects, occurring in the first 30 min of taxol action. Effects are detected after a few mins, are reversible, and are concentration/time dependent. The spindle and phragmoplast are remarkably modified due to the enhancement of lateral associations of MTs and the formation of abundant nonkinetochore and polar, asterlike MTs. The equatorial region of the interzone in anaphase may be entirely depleted of MTs, and the spindle may break perpendicular to the spindle axis. Mitosis is completed in these conditions, providing evidence for the motile autonomy of each half-spindle. Trailing chromosome arms in anaphase are often stretched and broken. Chromosome fragments are transported away from the polar regions, i.e., in the direction opposite to that expected (5, 6). This supplies the first direct evidence of pushing by elongating MTs in an anastral higher plant spindle. These observations draw attention to the relation between the lateral association of MT ends to assembly/disassembly and to the role of such an interaction in spindle function and organization.


2018 ◽  
Vol 11 (9) ◽  
pp. 4981-5006 ◽  
Author(s):  
Christian Borger ◽  
Matthias Schneider ◽  
Benjamin Ertl ◽  
Frank Hase ◽  
Omaira E. García ◽  
...  

Abstract. Volume mixing ratio water vapour profiles have been retrieved from IASI (Infrared Atmospheric Sounding Interferometer) spectra using the MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) processor. The retrievals are done for IASI observations that coincide with Vaisala RS92 radiosonde measurements performed in the framework of the GCOS (Global Climate Observing System) Reference Upper-Air Network (GRUAN) in three different climate zones: the tropics (Manus Island, 2° S), mid-latitudes (Lindenberg, 52° N), and polar regions (Sodankylä, 67° N). The retrievals show good sensitivity with respect to the vertical H2O distribution between 1 km above ground and the upper troposphere. Typical DOFS (degrees of freedom for signal) values are about 5.6 for the tropics, 5.1 for summertime mid-latitudes, 3.8 for wintertime mid-latitudes, and 4.4 for summertime polar regions. The errors of the MUSICA IASI water vapour profiles have been theoretically estimated considering the contribution of many different uncertainty sources. For all three climate regions, unrecognized cirrus clouds and uncertainties in atmospheric temperature have been identified as the most important error sources and they can reach about 25 %. The MUSICA IASI water vapour profiles have been compared to 100 individual coincident GRUAN water vapour profiles. The systematic difference between the data is within 11 % below 12 km altitude; however, at higher altitudes the MUSICA IASI data show a dry bias with respect to the GRUAN data of up to 21 %. The scatter is largest close to the surface (30 %), but never exceeds 21 % above 1 km altitude. The comparison study documents that the MUSICA IASI retrieval processor provides H2O profiles that capture the large variations in H2O volume mixing ratio profiles well from 1 km above ground up to altitudes close to the tropopause. Above 5 km the observed scatter with respect to GRUAN data is in reasonable agreement with the combined MUSICA IASI and GRUAN random errors. The increased scatter at lower altitudes might be explained by surface emissivity uncertainties at the summertime continental sites of Lindenberg and Sodankylä, and the upper tropospheric dry bias might suggest deficits in correctly modelling the spectroscopic line shapes of water vapour.


Sign in / Sign up

Export Citation Format

Share Document